福建省三明市普通高中2024屆高三下學(xué)期適應(yīng)性考試數(shù)學(xué)試題試卷_第1頁(yè)
福建省三明市普通高中2024屆高三下學(xué)期適應(yīng)性考試數(shù)學(xué)試題試卷_第2頁(yè)
福建省三明市普通高中2024屆高三下學(xué)期適應(yīng)性考試數(shù)學(xué)試題試卷_第3頁(yè)
福建省三明市普通高中2024屆高三下學(xué)期適應(yīng)性考試數(shù)學(xué)試題試卷_第4頁(yè)
福建省三明市普通高中2024屆高三下學(xué)期適應(yīng)性考試數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省三明市普通高中2024屆高三下學(xué)期適應(yīng)性考試數(shù)學(xué)試題試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個(gè)結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號(hào)是()A.①②③ B.②③④ C.①④ D.①②④2.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度3.在區(qū)間上隨機(jī)取一個(gè)實(shí)數(shù),使直線與圓相交的概率為()A. B. C. D.4.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb5.已知函數(shù),的圖象與直線的兩個(gè)相鄰交點(diǎn)的距離等于,則的一條對(duì)稱軸是()A. B. C. D.6.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.7.函數(shù)y=sin2x的圖象可能是A. B.C. D.8.若均為任意實(shí)數(shù),且,則的最小值為()A. B. C. D.9.已知復(fù)數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.310.把函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象.給出下列四個(gè)命題①的值域?yàn)棰诘囊粋€(gè)對(duì)稱軸是③的一個(gè)對(duì)稱中心是④存在兩條互相垂直的切線其中正確的命題個(gè)數(shù)是()A.1 B.2 C.3 D.411.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.12.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.400二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,滿足,,,則的取值范圍為_________.14.設(shè)雙曲線的一條漸近線方程為,則該雙曲線的離心率為____________.15.記Sk=1k+2k+3k+……+nk,當(dāng)k=1,2,3,……時(shí),觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測(cè),A﹣B=_____.16.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.18.(12分)某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長(zhǎng)度為,只要誤差的絕對(duì)值不超過(guò)就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測(cè)其長(zhǎng)度,繪制條形統(tǒng)計(jì)圖如圖:(1)估計(jì)該批次產(chǎn)品長(zhǎng)度誤差絕對(duì)值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率不小于0.8時(shí),該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率的最小值.19.(12分)設(shè)函數(shù).(1)若,時(shí),在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當(dāng)時(shí),.20.(12分)已知函數(shù),,使得對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個(gè)實(shí)根,且,求證:.21.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.22.(10分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點(diǎn),且平面平面ABCD.(1)證明:平面PNB;(2)問(wèn)棱PA上是否存在一點(diǎn)E,使平面DEM,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】

①通過(guò)證明平面,證得;②通過(guò)證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【題目詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)椋云矫妫盛谡_;當(dāng)平面與平面垂直時(shí),最大,最大值為,故③錯(cuò)誤;若與垂直,又因?yàn)椋云矫?,所以,又,所以平面,所以,因?yàn)?,所以顯然與不可能垂直,故④正確.故選:D【題目點(diǎn)撥】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.2、A【解題分析】

根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【題目詳解】因?yàn)?,故要得到,只需將向左平移個(gè)單位長(zhǎng)度.故選:A.【題目點(diǎn)撥】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.3、D【解題分析】

利用直線與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【題目詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【題目點(diǎn)撥】本題考查幾何概型概率的計(jì)算,同時(shí)也考查了利用直線與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.4、B【解題分析】試題分析:對(duì)于選項(xiàng)A,,,,而,所以,但不能確定的正負(fù),所以它們的大小不能確定;對(duì)于選項(xiàng)B,,,兩邊同乘以一個(gè)負(fù)數(shù)改變不等號(hào)方向,所以選項(xiàng)B正確;對(duì)于選項(xiàng)C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯(cuò)誤;對(duì)于選項(xiàng)D,利用在上為減函數(shù)易得,所以D錯(cuò)誤.所以本題選B.【考點(diǎn)】指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)【名師點(diǎn)睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進(jìn)行比較;若底數(shù)不同,可考慮利用中間量進(jìn)行比較.5、D【解題分析】

由題,得,由的圖象與直線的兩個(gè)相鄰交點(diǎn)的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因?yàn)楫?dāng)時(shí),,由此即可得到本題答案.【題目詳解】由題,得,因?yàn)榈膱D象與直線的兩個(gè)相鄰交點(diǎn)的距離等于,所以函數(shù)的最小正周期,則,所以,當(dāng)時(shí),,所以是函數(shù)的一條對(duì)稱軸,故選:D【題目點(diǎn)撥】本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對(duì)稱性.6、D【解題分析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【題目詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【題目點(diǎn)撥】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.7、D【解題分析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號(hào),即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r(shí),,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識(shí)別問(wèn)題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)由函數(shù)的奇偶性,判斷圖象的對(duì)稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).8、D【解題分析】

該題可以看做是圓上的動(dòng)點(diǎn)到曲線上的動(dòng)點(diǎn)的距離的平方的最小值問(wèn)題,可以轉(zhuǎn)化為圓心到曲線上的動(dòng)點(diǎn)的距離減去半徑的平方的最值問(wèn)題,結(jié)合圖形,可以斷定那個(gè)點(diǎn)應(yīng)該滿足與圓心的連線與曲線在該點(diǎn)的切線垂直的問(wèn)題來(lái)解決,從而求得切點(diǎn)坐標(biāo),即滿足條件的點(diǎn),代入求得結(jié)果.【題目詳解】由題意可得,其結(jié)果應(yīng)為曲線上的點(diǎn)與以為圓心,以為半徑的圓上的點(diǎn)的距離的平方的最小值,可以求曲線上的點(diǎn)與圓心的距離的最小值,在曲線上取一點(diǎn),曲線有在點(diǎn)M處的切線的斜率為,從而有,即,整理得,解得,所以點(diǎn)滿足條件,其到圓心的距離為,故其結(jié)果為,故選D.【題目點(diǎn)撥】本題考查函數(shù)在一點(diǎn)處切線斜率的應(yīng)用,考查圓的程,兩條直線垂直的斜率關(guān)系,屬中檔題.9、A【解題分析】,故,故選A.10、C【解題分析】

由圖象變換的原則可得,由可求得值域;利用代入檢驗(yàn)法判斷②③;對(duì)求導(dǎo),并得到導(dǎo)函數(shù)的值域,即可判斷④.【題目詳解】由題,,則向右平移個(gè)單位可得,,的值域?yàn)?①錯(cuò)誤;當(dāng)時(shí),,所以是函數(shù)的一條對(duì)稱軸,②正確;當(dāng)時(shí),,所以的一個(gè)對(duì)稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個(gè).故選:C【題目點(diǎn)撥】本題考查三角函數(shù)的圖像變換,考查代入檢驗(yàn)法判斷余弦型函數(shù)的對(duì)稱軸和對(duì)稱中心,考查導(dǎo)函數(shù)的幾何意義的應(yīng)用.11、A【解題分析】

由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計(jì)算.【題目詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長(zhǎng)為,如圖:的外接圓的圓心為斜邊的中點(diǎn),,且平面,,的中點(diǎn)為外接球的球心,半徑,外接球表面積.故選:A【題目點(diǎn)撥】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.12、B【解題分析】

設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【題目詳解】設(shè)公差為,,,,.故選:B.【題目點(diǎn)撥】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

設(shè),,,,由,,,根據(jù)平面向量模的幾何意義,可得A點(diǎn)軌跡為以O(shè)為圓心、1為半徑的圓,C點(diǎn)軌跡為以B為圓心、1為半徑的圓,為的距離,利用數(shù)形結(jié)合求解.【題目詳解】設(shè),,,,如圖所示:因?yàn)?,,,所以A點(diǎn)軌跡為以O(shè)為圓心、1為半徑的圓,C點(diǎn)軌跡為以B為圓心、1為半徑的圓,則即的距離,由圖可知,.故答案為:【題目點(diǎn)撥】本題主要考查平面向量的模及運(yùn)算的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.14、【解題分析】

根據(jù)漸近線得到,,計(jì)算得到離心率.【題目詳解】,一條漸近線方程為:,故,,.故答案為:.【題目點(diǎn)撥】本題考查了雙曲線的漸近線和離心率,意在考查學(xué)生的計(jì)算能力.15、【解題分析】

觀察知各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),據(jù)此計(jì)算得到答案.【題目詳解】根據(jù)所給的已知等式得到:各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【題目點(diǎn)撥】本題考查了歸納推理,意在考查學(xué)生的推理能力.16、18【解題分析】

根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對(duì)稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【題目詳解】解:①當(dāng)時(shí),,在區(qū)間上單調(diào)遞減,則,即,則.②當(dāng)時(shí),,函數(shù)開口向上,對(duì)稱軸為,因?yàn)樵趨^(qū)間上單調(diào)遞減,則,因?yàn)?則,整理得,又因?yàn)?則.所以即,所以當(dāng)且僅當(dāng)時(shí)等號(hào)成立.綜上所述,的最大值為18.故答案為:18【題目點(diǎn)撥】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析(2)證明見解析【解題分析】

(1)先根據(jù)絕對(duì)值不等式求得的最大值,從而得到,再利用基本不等式進(jìn)行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個(gè)不等式,再進(jìn)行不等式相加,即可得答案.【題目詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【題目點(diǎn)撥】本題考查絕對(duì)值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.18、(1)(2)【解題分析】

(1)根據(jù)題意即可寫出該批次產(chǎn)品長(zhǎng)度誤差的絕對(duì)值的頻率分布列,再根據(jù)期望公式即可求出;(2)由(1)可知,任取一件產(chǎn)品是標(biāo)準(zhǔn)長(zhǎng)度的概率為0.4,即可求出隨機(jī)抽取2件產(chǎn)品,都不是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率,由對(duì)立事件的概率公式即可得到隨機(jī)抽取2件產(chǎn)品,至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率,判斷其是否符合生產(chǎn)要求;當(dāng)不符合要求時(shí),設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率為,可根據(jù)上述方法求出,解,即可得出最小值.【題目詳解】(1)由柱狀圖,該批次產(chǎn)品長(zhǎng)度誤差的絕對(duì)值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學(xué)期望的估計(jì)為.(2)由(1)可知任取一件產(chǎn)品是標(biāo)準(zhǔn)長(zhǎng)度的概率為0.4,設(shè)至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品為事件,則,故不符合概率不小于0.8的要求.設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率為,由題意,又,解得,所以符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率的最小值為.【題目點(diǎn)撥】本題主要考查離散型隨機(jī)變量的期望的求法,相互獨(dú)立事件同時(shí)發(fā)生的概率公式的應(yīng)用,對(duì)立事件的概率公式的應(yīng)用,解題關(guān)鍵是對(duì)題意的理解,意在考查學(xué)生的數(shù)學(xué)建模能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.19、(1)(2)見解析【解題分析】

(1)在上單調(diào)遞減等價(jià)于在恒成立,分離參數(shù)即可解決.(2)先對(duì)求導(dǎo),化簡(jiǎn)后根據(jù)零點(diǎn)存在性定理判斷唯一零點(diǎn)所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【題目詳解】(1),時(shí),,,∵在上單調(diào)遞減.∴,.令,,時(shí),;時(shí),,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時(shí),,,令,顯然在上為增函數(shù).又,,∴有唯一零點(diǎn).且,時(shí),,;時(shí),,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當(dāng)時(shí),.【題目點(diǎn)撥】此題考查函數(shù)定區(qū)間上單調(diào),和零點(diǎn)存在性定理等知識(shí)點(diǎn),難點(diǎn)為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目.20、(1);(2)證明見解析.【解題分析】

(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個(gè)實(shí)根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【題目詳解】(1)根據(jù)題意,對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.則在上單調(diào)遞減,因?yàn)?,?dāng)時(shí),在內(nèi)單調(diào)遞減.,當(dāng)時(shí),由,有,此時(shí),當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,綜上,,所以.(2)由為方程的兩個(gè)實(shí)根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計(jì)算能力.21、(1)見解析;(2)存在,長(zhǎng)【解題分析】

(1)先證面,又因?yàn)槊?所以平面平面.(2)根據(jù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論