版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省大連市重點中學(xué)2024屆高三“聯(lián)測促改”活動數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進(jìn)行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,182.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.3.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.4.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.5.復(fù)數(shù)的虛部是()A. B. C. D.6.設(shè),則A. B. C. D.7.某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢8.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i9.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點,直線與橢圓交于,兩點,且,則該橢圓的離心率是()A. B. C. D.10.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.6311.已知等差數(shù)列的前n項和為,,則A.3 B.4 C.5 D.612.已知為虛數(shù)單位,實數(shù)滿足,則()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,只有第5項的二項式系數(shù)最大,則該二項展開式中的常數(shù)項等于_____.14.已知等差數(shù)列滿足,,則的值為________.15.函數(shù)的最大值與最小正周期相同,則在上的單調(diào)遞增區(qū)間為______.16.四邊形中,,,,,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)()(1)函數(shù)在點處的切線方程為,求函數(shù)的極值;(2)當(dāng)時,對于任意,當(dāng)時,不等式恒成立,求出實數(shù)的取值范圍.18.(12分)某網(wǎng)絡(luò)商城在年月日開展“慶元旦”活動,當(dāng)天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進(jìn)行紅包獎勵.如圖是抽取的家店鋪元旦當(dāng)天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當(dāng)天銷售額的平均值;(2)估計抽取的家店鋪中元旦當(dāng)天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進(jìn)行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學(xué)期望.19.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.20.(12分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.21.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)求曲線上的點到直線距離的最小值和最大值.22.(10分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
利用統(tǒng)計圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【題目詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.【題目點撥】本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意統(tǒng)計圖的性質(zhì)的合理運用.2、A【解題分析】
設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【題目詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【題目點撥】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.3、A【解題分析】
設(shè),則MF的中點坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【題目詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設(shè),∴MF的中點坐標(biāo)為.代入方程可得,∴,∴,∴(負(fù)值舍去).故選:A.【題目點撥】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構(gòu)造的齊次方程.4、D【解題分析】
先求出球心到四個支點所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【題目詳解】設(shè)四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【題目點撥】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.5、C【解題分析】因為,所以的虛部是,故選C.6、C【解題分析】分析:利用復(fù)數(shù)的除法運算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點睛:復(fù)數(shù)是高考中的必考知識,主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運算.要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.7、D【解題分析】
根據(jù)折線圖依次判斷每個選項得到答案.【題目詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【題目點撥】本題考查了折線圖,意在考查學(xué)生的理解能力.8、B【解題分析】
復(fù)數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【題目詳解】∵為純虛數(shù),∴,解得..故選:.【題目點撥】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.9、A【解題分析】
聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【題目詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.【題目點撥】本題考查了直線與橢圓的交點,考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.10、B【解題分析】
根據(jù)二項式展開式的通項公式,結(jié)合乘法分配律,求得的系數(shù).【題目詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【題目點撥】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識,考查理解能力,計算能力,分類討論和應(yīng)用意識.11、C【解題分析】
方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.12、D【解題分析】,則故選D.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】
由題意可得,再利用二項展開式的通項公式,求得二項展開式常數(shù)項的值.【題目詳解】的二項展開式的中,只有第5項的二項式系數(shù)最大,,通項公式為,令,求得,可得二項展開式常數(shù)項等于,故答案為1.【題目點撥】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.14、11【解題分析】
由等差數(shù)列的下標(biāo)和性質(zhì)可得,由即可求出公差,即可求解;【題目詳解】解:設(shè)等差數(shù)列的公差為,,又因為,解得故答案為:【題目點撥】本題考查等差數(shù)列的通項公式及等差數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.15、【解題分析】
利用三角函數(shù)的輔助角公式進(jìn)行化簡,求出函數(shù)的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【題目詳解】∵,則函數(shù)的最大值為2,周期,的最大值與最小正周期相同,,得,則,當(dāng)時,,則當(dāng)時,得,即函數(shù)在,上的單調(diào)遞增區(qū)間為,故答案為:.【題目點撥】本題考查三角函數(shù)的性質(zhì)、單調(diào)區(qū)間,利用輔助角公式求出函數(shù)的解析式是解決本題的關(guān)鍵,同時要注意單調(diào)區(qū)間為定義域的一個子區(qū)間.16、【解題分析】
在中利用正弦定理得出,進(jìn)而可知,當(dāng)時,取最小值,進(jìn)而計算出結(jié)果.【題目詳解】,如圖,在中,由正弦定理可得,即,故當(dāng)時,取到最小值為.故答案為:.【題目點撥】本題考查解三角形,同時也考查了常見的三角函數(shù)值,考查邏輯推理能力與計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極小值為,極大值為.(2)【解題分析】
(1)根據(jù)斜線的斜率即可求得參數(shù),再對函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【題目詳解】(1)函數(shù)的定義域為,,,,可知,,解得,,可知在,時,,函數(shù)單調(diào)遞增,在時,,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【題目點撥】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點在于對目標(biāo)式的變形,屬綜合性中檔題.18、(1)元;(2)32家;(3)分布列見解析;【解題分析】
(1)根據(jù)頻率分布直方圖求出各組頻率,再由平均數(shù)公式,即可求解;(2)求出的頻率即可;(3)中的個數(shù)的所有可能取值為,,,求出可能值的概率,得到分布列,由期望公式即可求解.【題目詳解】(1)頻率分布直方圖銷售額的平均值為千元,所以銷售額的平均值為元;(2)不低于元的有家(3)銷售額在的店鋪有家,銷售額在的店鋪有家.選取兩家,設(shè)銷售額在的有家.則的所有可能取值為,,.,,所以的分布列為數(shù)學(xué)期望【題目點撥】本題考查應(yīng)用頻率分布直方圖求平均數(shù)和頻數(shù),考查離散型隨機變量的分布列和期望,屬于基礎(chǔ)題.19、(Ⅰ)見解析;(Ⅱ)【解題分析】
(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設(shè),則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點到平面的距離,由是中點,得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【題目詳解】(Ⅰ)取的中點,連接,由,,得三點共線,且,又,,所以平面,所以.(Ⅱ)設(shè),,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點到平面的距離,因為是中點,所以為到平面的距離,因為與平面所成的角的正弦值為,即,解得.【題目點撥】本題主要考查線面垂直的判定定理,線面角的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象運算求解的能力,屬于中檔題.20、(1),;(2)【解題分析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結(jié)論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項和公式即可求得數(shù)列前n項和.試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設(shè)等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項和為n(n+1),數(shù)列{2n﹣1}的前n項和為1×=2n﹣1,∴數(shù)列{bn}的前n項和為;考點:1.等差數(shù)列性質(zhì)的綜合應(yīng)用;2.等比數(shù)列性質(zhì)的綜合應(yīng)用;1.數(shù)列求和.21、(1)(2)最大值;最小值.【解題分析】
(1)結(jié)合極坐標(biāo)和直角坐標(biāo)的互化公式可得;(2)利用參數(shù)方程,求解點到直線的距離公式,結(jié)合三角函數(shù)知識求解最值.【題目詳解】解:(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游區(qū)游客車輛停放合同3篇
- 安居房施工合同簽訂3篇
- 教育扶助計劃合同3篇
- 插畫設(shè)計服務(wù)協(xié)議3篇
- 攔水壩施工條款列表3篇
- 招標(biāo)文件評審表的制定與評審流程3篇
- 招標(biāo)第三方評審文件要求3篇
- 方式抵押合同完整范本3篇
- 數(shù)據(jù)安全技術(shù)服務(wù)合同模板3篇
- 排水工程招標(biāo)解析3篇
- 深交所創(chuàng)業(yè)板注冊制發(fā)行上市審核動態(tài)(2020-2022)
- 電力系統(tǒng)繼電保護(hù)試題以及答案(二)
- 燃?xì)庥邢薰就话l(fā)環(huán)境專項應(yīng)急預(yù)案
- 狼瘡性腦病的護(hù)理
- 2024版砂石料物流配送服務(wù)合同3篇
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
- 中醫(yī)醫(yī)術(shù)確有專長人員醫(yī)師資格考核申報資料表
- 2024年中國電信運營商服務(wù)合同
- 智慧醫(yī)學(xué)語言基礎(chǔ)2024a學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年煤礦主要負(fù)責(zé)人安全考試題庫(濃縮500題)
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
評論
0/150
提交評論