版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆寧夏大學(xué)附中高三下學(xué)期期末學(xué)分認(rèn)定考試數(shù)學(xué)試題試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體的最長(zhǎng)棱的長(zhǎng)為()A. B. C. D.3.如圖,網(wǎng)格紙是由邊長(zhǎng)為1的小正方形構(gòu)成,若粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.4.過拋物線()的焦點(diǎn)且傾斜角為的直線交拋物線于兩點(diǎn).,且在第一象限,則()A. B. C. D.5.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.一個(gè)空間幾何體的正視圖是長(zhǎng)為4,寬為的長(zhǎng)方形,側(cè)視圖是邊長(zhǎng)為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.7.洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點(diǎn)為陰數(shù).如圖,若從四個(gè)陰數(shù)和五個(gè)陽數(shù)中分別隨機(jī)選取1個(gè)數(shù),則其和等于11的概率是().A. B. C. D.8.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.9.將一張邊長(zhǎng)為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.10.一個(gè)組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長(zhǎng)為1),則該幾何體的體積是()A. B. C. D.11.若,則,,,的大小關(guān)系為()A. B.C. D.12.已知向量,,當(dāng)時(shí),()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知四棱錐的底面ABCD是邊長(zhǎng)為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長(zhǎng)時(shí),則______________;四棱錐P-ABCD的體積為______________.14.直線是曲線的一條切線為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)__________.15.學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:甲說:“作品獲得一等獎(jiǎng)”;乙說:“作品獲得一等獎(jiǎng)”;丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說:“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是___.16.平行四邊形中,,為邊上一點(diǎn)(不與重合),將平行四邊形沿折起,使五點(diǎn)均在一個(gè)球面上,當(dāng)四棱錐體積最大時(shí),球的表面積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四邊形中,,,.(1)求的長(zhǎng);(2)若的面積為6,求的值.18.(12分)在平面直角坐標(biāo)系中,有一個(gè)微型智能機(jī)器人(大小不計(jì))只能沿著坐標(biāo)軸的正方向或負(fù)方向行進(jìn),且每一步只能行進(jìn)1個(gè)單位長(zhǎng)度,例如:該機(jī)器人在點(diǎn)處時(shí),下一步可行進(jìn)到、、、這四個(gè)點(diǎn)中的任一位置.記該機(jī)器人從坐標(biāo)原點(diǎn)出發(fā)、行進(jìn)步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達(dá)式.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.20.(12分)已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由.21.(12分)已知在中,內(nèi)角所對(duì)的邊分別為,若,,且.(1)求的值;(2)求的面積.22.(10分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
三視圖對(duì)應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【題目詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個(gè)圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【題目點(diǎn)撥】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時(shí)注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對(duì)應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來求其體積,本題屬于基礎(chǔ)題.2、D【解題分析】
先根據(jù)三視圖還原幾何體是一個(gè)四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長(zhǎng)度.【題目詳解】根據(jù)三視圖可知,幾何體是一個(gè)四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長(zhǎng)棱的長(zhǎng)為故選:D【題目點(diǎn)撥】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.3、C【解題分析】
根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【題目詳解】由三視圖可知,該幾何體可看作是半個(gè)圓柱和一個(gè)長(zhǎng)方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長(zhǎng)方體的底面四邊形相鄰邊長(zhǎng)分別為1,2,高為4,所以該幾何體的表面積,故選C.【題目點(diǎn)撥】本題主要考查三視圖的識(shí)別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).4、C【解題分析】
作,;,由題意,由二倍角公式即得解.【題目詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【題目點(diǎn)撥】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5、D【解題分析】
先化簡(jiǎn),再根據(jù),且AB求解.【題目詳解】因?yàn)?,又因?yàn)?,且AB,所以.故選:D【題目點(diǎn)撥】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.6、B【解題分析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【題目詳解】由題意原幾何體是正三棱柱,.故選:B.【題目點(diǎn)撥】本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.7、A【解題分析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個(gè),由此能求出其和等于11的概率.【題目詳解】解:從四個(gè)陰數(shù)和五個(gè)陽數(shù)中分別隨機(jī)選取1個(gè)數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個(gè),其和等于的概率.故選:.【題目點(diǎn)撥】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.8、A【解題分析】
利用計(jì)算即可,其中表示事件A所包含的基本事件個(gè)數(shù),為基本事件總數(shù).【題目詳解】從7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計(jì)算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【題目點(diǎn)撥】本題考查古典概型的概率計(jì)算問題,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.9、B【解題分析】設(shè)折成的四棱錐的底面邊長(zhǎng)為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.10、C【解題分析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個(gè)三棱柱,從而解得幾何體的體積.【題目詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個(gè)底面半徑為1的圓、高為2的圓柱中挖去一個(gè)底面腰長(zhǎng)為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【題目點(diǎn)撥】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.11、D【解題分析】因?yàn)?,所以,因?yàn)?,,所?.綜上;故選D.12、A【解題分析】
根據(jù)向量的坐標(biāo)運(yùn)算,求出,,即可求解.【題目詳解】,.故選:A.【題目點(diǎn)撥】本題考查向量的坐標(biāo)運(yùn)算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、90°【解題分析】
易得平面PAD,P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),顯然,PA是圓的直徑時(shí),PA最長(zhǎng);將四棱錐補(bǔ)形為長(zhǎng)方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【題目詳解】如圖,由及,得平面PAD,即P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),易知,當(dāng)P、、A三點(diǎn)共線時(shí),PA達(dá)到最長(zhǎng),此時(shí),PA是圓的直徑,則;又,所以平面ABCD,此時(shí)可將四棱錐補(bǔ)形為長(zhǎng)方體,其體對(duì)角線為,底面邊長(zhǎng)為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【題目點(diǎn)撥】本題四棱錐外接球有關(guān)的問題,考查學(xué)生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.14、【解題分析】
根據(jù)切線的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點(diǎn)的坐標(biāo),進(jìn)而求得切線方程,通過對(duì)比系數(shù)求得的值.【題目詳解】,則,所以切點(diǎn)為,故切線為,即,故.故答案為:【題目點(diǎn)撥】本小題主要考查利用導(dǎo)數(shù)求解曲線的切線方程有關(guān)問題,屬于基礎(chǔ)題.15、C【解題分析】
假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說對(duì)的人數(shù).【題目詳解】分別獲獎(jiǎng)的說對(duì)人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對(duì)錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對(duì)錯(cuò)丙對(duì)錯(cuò)對(duì)錯(cuò)丁對(duì)錯(cuò)錯(cuò)對(duì)說對(duì)人數(shù)3021故獲得一等獎(jiǎng)的作品是C.【題目點(diǎn)撥】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.16、【解題分析】
依題意可得、、、四點(diǎn)共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當(dāng)且僅當(dāng)面面時(shí)體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【題目詳解】解:依題意可得、、、四點(diǎn)共圓,所以因?yàn)?,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當(dāng)面面時(shí),取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【題目點(diǎn)撥】本題考查多面體的外接球的相關(guān)計(jì)算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)利用余弦定理可得的長(zhǎng);(2)利用面積得出,結(jié)合正弦定理可得.【題目詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【題目點(diǎn)撥】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時(shí)一般選用正弦定理,已知邊較多時(shí)一般選用余弦定理.18、(1),,,(2)【解題分析】
(1)根據(jù)機(jī)器人的進(jìn)行規(guī)律可確定、、的值;(2)首先根據(jù)機(jī)器人行進(jìn)規(guī)則知機(jī)器人沿軸行進(jìn)步,必須沿軸負(fù)方向行進(jìn)相同的步數(shù),而余下的每一步行進(jìn)方向都有兩個(gè)選擇(向上或向下),由此結(jié)合組合知識(shí)確定機(jī)器人的每一種走法關(guān)于的表達(dá)式,并得到的表達(dá)式,然后結(jié)合二項(xiàng)式定理及展開式的通項(xiàng)公式進(jìn)行求解.【題目詳解】解:(1),,(2)設(shè)為沿軸正方向走的步數(shù)(每一步長(zhǎng)度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過的最大整數(shù))總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負(fù)方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價(jià)于求中含項(xiàng)的系數(shù),為其中含項(xiàng)的系數(shù)為故.【題目點(diǎn)撥】本題考查組合數(shù)、二項(xiàng)式定理,考查學(xué)生的邏輯推理能力,推理論證能力以及分類討論的思想.19、(1);(2)【解題分析】
(1)分類討論去絕對(duì)值號(hào),即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時(shí)成立,可得的最小值,即可求解.【題目詳解】(1)①當(dāng)時(shí),不等式可化為,得,無解;②當(dāng)-2≤x≤1時(shí),不等式可化為得x>0,故0<x≤1;③當(dāng)x>1時(shí),不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當(dāng)時(shí),又當(dāng)時(shí),取得最小值,且又所以當(dāng)時(shí),與同時(shí)取得最小值.所以所以,即實(shí)數(shù)的取值范圍為【題目點(diǎn)撥】本題主要考查了含絕對(duì)值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.20、(1);(2)存在,.【解題分析】
(1)由條件建立關(guān)于的方程組,可求得,得出橢圓的方程;(2)①當(dāng)直線的斜率不存在時(shí),可求得,求得,②當(dāng)直線的斜率存在且不為0時(shí),設(shè)聯(lián)立直線與橢圓的方程,求出線段,再由得出線段,根據(jù)等差中項(xiàng)可求得,得出結(jié)論.【題目詳解】(1)由條件得,所以橢圓的方程為:;(2),①當(dāng)直線的斜率不存在時(shí),,此時(shí),②當(dāng)直線的斜率存在且不為0時(shí),設(shè),聯(lián)立消元得,設(shè),,直線的斜率為,同理可得,所以,綜合①②,存在常數(shù),使得成等差數(shù)列.【題目點(diǎn)撥】本題考查利用橢圓的離心率求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中的弦長(zhǎng)公式的相關(guān)問題,當(dāng)兩直線的斜率具有關(guān)系時(shí),可能通過斜率的代換得出另一條線段的弦長(zhǎng),屬于中檔題.21、(1);(2)【解題分析】
(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進(jìn)而可得,由三角形面積公式即可求解.【題目詳解】(1)由,得,由正弦定理將邊化為角可得,∵,∴,∴,化簡(jiǎn)可得,∴解得.(2)∵在中,,∴,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年豐樂草莓種植戶產(chǎn)品收購與加工合同3篇
- 二零二五年度企業(yè)信息安全審計(jì)技術(shù)服務(wù)合同范本3篇
- 二零二五年度別墅型二手房買賣定金協(xié)議書
- 2025年度環(huán)保產(chǎn)業(yè)園區(qū)污水處理設(shè)施建設(shè)合同3篇
- 2024年租賃合同:高端辦公設(shè)備的短期租賃服務(wù)
- 2024年資深灶房師傅勞務(wù)協(xié)議范本版B版
- 2024年節(jié)能環(huán)保項(xiàng)目建議書編制規(guī)范合同文本3篇
- 2024漁船租賃及海洋環(huán)境保護(hù)項(xiàng)目合同范本3篇
- 2024年股權(quán)讓渡協(xié)議范本下載版B版
- 樹屋施工方案
- 2024年03月山東煙臺(tái)銀行招考筆試歷年參考題庫附帶答案詳解
- 安徽省合肥市蜀山區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期地理期末模擬練習(xí)(含答案)
- 新建設(shè)項(xiàng)目施工人員安全教育培訓(xùn)課件
- 江蘇省揚(yáng)州市2024-2025學(xué)年高中學(xué)業(yè)水平合格性模擬考試英語試題(含答案)
- 品質(zhì)總監(jiān)轉(zhuǎn)正述職報(bào)告
- 2024年游艇俱樂部會(huì)員專屬活動(dòng)策劃與執(zhí)行合同3篇
- 《項(xiàng)目管理培訓(xùn)課程》課件
- 2024年企業(yè)團(tuán)購:銷售合作協(xié)議3篇
- 2024-2025學(xué)年八年級(jí)語文上學(xué)期期末真題復(fù)習(xí) 專題06 文言文閱讀
- 制藥課程設(shè)計(jì)三廢處理
- 期末測(cè)試卷(試題)-2024-2025學(xué)年北師大版數(shù)學(xué)五年級(jí)上冊(cè)
評(píng)論
0/150
提交評(píng)論