版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省鐵嶺市六校2024屆全國(guó)卷Ⅰ數(shù)學(xué)試題高考模擬題解析(精編版)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.2.在邊長(zhǎng)為2的菱形中,,將菱形沿對(duì)角線對(duì)折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.3.記個(gè)兩兩無(wú)交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間4.若的展開(kāi)式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開(kāi)式中有理項(xiàng)系數(shù)之和為()A.85 B.84 C.57 D.565.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.6.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個(gè)數(shù)為()A.1 B.2 C.3 D.07.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.8.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.849.函數(shù)的部分圖像大致為()A. B.C. D.10.若復(fù)數(shù)是純虛數(shù),則實(shí)數(shù)的值為()A.或 B. C. D.或11.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.12.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在中,角、、所對(duì)的邊分別為、、,若,,則的取值范圍是_____.14.如果拋物線上一點(diǎn)到準(zhǔn)線的距離是6,那么______.15.已知x,y>0,且,則x+y的最小值為_(kāi)____.16.若變量,滿足約束條件則的最大值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè),且當(dāng)時(shí),不等式有解,求實(shí)數(shù)的取值范圍.18.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長(zhǎng)為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長(zhǎng)為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.19.(12分)設(shè)函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.20.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點(diǎn),且.(1)求證:平面ACE;(2)當(dāng)PA的長(zhǎng)為何值時(shí),AC與平面PCD所成的角為?21.(12分)已知拋物線的準(zhǔn)線過(guò)橢圓C:(a>b>0)的左焦點(diǎn)F,且點(diǎn)F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)F做直線與橢圓C交于A,B兩點(diǎn),P是AB的中點(diǎn),線段AB的中垂線交直線l于點(diǎn)Q.若,求直線AB的方程.22.(10分)已知數(shù)列滿足:,,且對(duì)任意的都有,(Ⅰ)證明:對(duì)任意,都有;(Ⅱ)證明:對(duì)任意,都有;(Ⅲ)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
先判斷命題的真假,進(jìn)而根據(jù)復(fù)合命題真假的真值表,即可得答案.【題目詳解】,,因?yàn)?,,所以,所以,即命題p為真命題;畫(huà)出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【題目點(diǎn)撥】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.2、D【解題分析】
取AC中點(diǎn)N,由題意得即為二面角的平面角,過(guò)點(diǎn)B作于O,易得點(diǎn)O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【題目詳解】如圖,由題意易知與均為正三角形,取AC中點(diǎn)N,連接BN,DN,則,,即為二面角的平面角,過(guò)點(diǎn)B作于O,則平面ACD,由,可得,,,即點(diǎn)O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【題目點(diǎn)撥】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.3、D【解題分析】
可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫(huà)出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對(duì)應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【題目詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【題目點(diǎn)撥】本題考查由函數(shù)的奇偶性,單調(diào)性求解對(duì)應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題4、A【解題分析】
先求,再確定展開(kāi)式中的有理項(xiàng),最后求系數(shù)之和.【題目詳解】解:的展開(kāi)式中二項(xiàng)式系數(shù)和為256故,要求展開(kāi)式中的有理項(xiàng),則則二項(xiàng)式展開(kāi)式中有理項(xiàng)系數(shù)之和為:故選:A【題目點(diǎn)撥】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開(kāi)式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.5、D【解題分析】
推導(dǎo)出函數(shù)的圖象關(guān)于直線對(duì)稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對(duì)的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【題目詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對(duì)稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對(duì)出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【題目點(diǎn)撥】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對(duì)稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對(duì)參數(shù)的值進(jìn)行檢驗(yàn),考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.6、C【解題分析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個(gè)數(shù).【題目詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個(gè)數(shù)為3.故選:C.【題目點(diǎn)撥】本小題主要考查由三視圖還原為原圖,屬于基礎(chǔ)題.7、D【解題分析】
先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【題目詳解】由已知得,則.因?yàn)椋瑪?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡(jiǎn)得,所以.故選:D.【題目點(diǎn)撥】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問(wèn)題.8、B【解題分析】
畫(huà)出幾何體的直觀圖,計(jì)算表面積得到答案.【題目詳解】該幾何體的直觀圖如圖所示:故.故選:.【題目點(diǎn)撥】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.9、A【解題分析】
根據(jù)函數(shù)解析式,可知的定義域?yàn)椋ㄟ^(guò)定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【題目詳解】解:因?yàn)?,所以的定義域?yàn)椋瑒t,∴為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除選項(xiàng),且當(dāng)時(shí),,排除選項(xiàng),所以正確.故選:A.【題目點(diǎn)撥】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.10、C【解題分析】試題分析:因?yàn)閺?fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點(diǎn):純虛數(shù)11、C【解題分析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【題目詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【題目點(diǎn)撥】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.12、A【解題分析】
則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,以此類推,能求出改形塔的最上層正方體的邊長(zhǎng)小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【題目詳解】最底層正方體的棱長(zhǎng)為8,則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,從下往上第五層正方體的棱長(zhǎng)為:,從下往上第六層正方體的棱長(zhǎng)為:,從下往上第七層正方體的棱長(zhǎng)為:,從下往上第八層正方體的棱長(zhǎng)為:,∴改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.【題目點(diǎn)撥】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
計(jì)算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【題目詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【題目點(diǎn)撥】本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.14、【解題分析】
先求出拋物線的準(zhǔn)線方程,然后根據(jù)點(diǎn)到準(zhǔn)線的距離為6,列出,直接求出結(jié)果.【題目詳解】拋物線的準(zhǔn)線方程為,由題意得,解得.∵點(diǎn)在拋物線上,∴,∴,故答案為:.【題目點(diǎn)撥】本小題主要考查拋物線的定義,屬于基礎(chǔ)題.15、1【解題分析】
處理變形x+y=x()+y結(jié)合均值不等式求解最值.【題目詳解】x,y>0,且,則x+y=x()+y1,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)x=4,y=2,取得最小值1.故答案為:1【題目點(diǎn)撥】此題考查利用均值不等式求解最值,關(guān)鍵在于熟練掌握均值不等式的適用條件,注意考慮等號(hào)成立的條件.16、9【解題分析】
做出滿足條件的可行域,根據(jù)圖形,即可求出的最大值.【題目詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標(biāo)函數(shù)過(guò)點(diǎn)時(shí)取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【題目點(diǎn)撥】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解題分析】
(1)通過(guò)分類討論去掉絕對(duì)值符號(hào),進(jìn)而解不等式組求得結(jié)果;(2)將不等式整理為,根據(jù)能成立思想可知,由此構(gòu)造不等式求得結(jié)果.【題目詳解】(1)當(dāng)時(shí),可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實(shí)數(shù)的取值范圍是.【題目點(diǎn)撥】本題考查絕對(duì)值不等式的求解、根據(jù)不等式有解求解參數(shù)范圍的問(wèn)題;關(guān)鍵是明確對(duì)于不等式能成立的問(wèn)題,通過(guò)分離變量的方式將問(wèn)題轉(zhuǎn)化為所求參數(shù)與函數(shù)最值之間的比較問(wèn)題.18、(1),.(2)【解題分析】
(1)由余弦定理的,然后根據(jù)直線與圓相切的性質(zhì)求出,從而求出;(2)求得的表達(dá)式,通過(guò)求導(dǎo)研究函數(shù)的單調(diào)性求得最大值.【題目詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因?yàn)榕c半圓相切于,所以,所以,所以.所以四邊形的周長(zhǎng)為,.(2)設(shè)四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為.【題目點(diǎn)撥】本題考查余弦定理、直線與圓的位置關(guān)系、導(dǎo)數(shù)與函數(shù)最值的關(guān)系,考查考生的邏輯思維能力,運(yùn)算求解能力,以及函數(shù)與方程的思想.19、(1)或(2)最小值為.【解題分析】
(1)討論,,三種情況,分別計(jì)算得到答案.(2)計(jì)算得到,再利用均值不等式計(jì)算得到答案.【題目詳解】(1)當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當(dāng)時(shí),,所以.因?yàn)椋桑芍?,所以,?dāng)且僅當(dāng),,時(shí),等號(hào)成立.所以的最小值為.【題目點(diǎn)撥】本題考查了解絕對(duì)值不等式,函數(shù)最值,均值不等式,意在考查學(xué)生對(duì)于不等式,函數(shù)知識(shí)的綜合應(yīng)用.20、(1)證明見(jiàn)解析;(2)當(dāng)時(shí),AC與平面PCD所成的角為.【解題分析】
(1)連接交于,由相似三角形可得,結(jié)合得出,故而平面;(2)過(guò)作,可證平面,根據(jù)計(jì)算,得出的大小,再計(jì)算的長(zhǎng).【題目詳解】(1)證明:連接BD交AC于點(diǎn)O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時(shí),AC與平面PCD所成的角為.【題目點(diǎn)撥】本題考查了線面平行的判定,線面垂直的判定與線面角的計(jì)算,屬于中檔題.21、(1);(2)或.【解題分析】
(1)由拋物線的準(zhǔn)線方程求出的值,確定左焦點(diǎn)坐標(biāo),再由點(diǎn)F到直線l:的距離為4,求出即可;(2)設(shè)直線方程,與橢圓方程聯(lián)立,運(yùn)用根與系數(shù)關(guān)系和弦長(zhǎng)公式,以及兩直線垂直的條件和中點(diǎn)坐標(biāo)公式,即可得到所求直線的方程.【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度人工智能技術(shù)研發(fā)個(gè)人勞務(wù)合同書(shū)3篇
- 二零二五年度場(chǎng)項(xiàng)目投標(biāo)失敗原因調(diào)查與改進(jìn)策略合同4篇
- 2025年房屋贈(zèng)與合同模板
- 2025年分期付款影視制作合同
- 2025年度鋼材出口退稅代理服務(wù)合同樣本2篇
- 二零二五年度玻璃隔斷安裝工程招投標(biāo)文件編制與審查合同3篇
- 2025年度民宿布草租賃與民宿客棧智能化升級(jí)合同4篇
- 2024年度青海省公共營(yíng)養(yǎng)師之四級(jí)營(yíng)養(yǎng)師押題練習(xí)試卷A卷附答案
- 2024年度青海省公共營(yíng)養(yǎng)師之四級(jí)營(yíng)養(yǎng)師能力檢測(cè)試卷A卷附答案
- 2024年度青海省公共營(yíng)養(yǎng)師之三級(jí)營(yíng)養(yǎng)師能力提升試卷A卷附答案
- 2024-2025學(xué)年山東省濰坊市高一上冊(cè)1月期末考試數(shù)學(xué)檢測(cè)試題(附解析)
- 江蘇省揚(yáng)州市蔣王小學(xué)2023~2024年五年級(jí)上學(xué)期英語(yǔ)期末試卷(含答案無(wú)聽(tīng)力原文無(wú)音頻)
- 數(shù)學(xué)-湖南省新高考教學(xué)教研聯(lián)盟(長(zhǎng)郡二十校聯(lián)盟)2024-2025學(xué)年2025屆高三上學(xué)期第一次預(yù)熱演練試題和答案
- 決勝中層:中層管理者的九項(xiàng)修煉-記錄
- 幼兒園人民幣啟蒙教育方案
- 軍事理論(2024年版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 《無(wú)人機(jī)法律法規(guī)知識(shí)》課件-第1章 民用航空法概述
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)(吳洪貴)任務(wù)七 裂變傳播
- 單級(jí)倒立擺系統(tǒng)建模與控制器設(shè)計(jì)
- 齲病的治療 深齲的治療
- 銀行卡凍結(jié)怎么寫(xiě)申請(qǐng)書(shū)
評(píng)論
0/150
提交評(píng)論