2024屆吉林省通化市梅河口第五中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第1頁
2024屆吉林省通化市梅河口第五中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第2頁
2024屆吉林省通化市梅河口第五中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第3頁
2024屆吉林省通化市梅河口第五中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第4頁
2024屆吉林省通化市梅河口第五中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆吉林省通化市梅河口第五中學(xué)高三得分訓(xùn)練(二)數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知滿足,則()A. B. C. D.2.已知正項(xiàng)等比數(shù)列滿足,若存在兩項(xiàng),,使得,則的最小值為().A.16 B. C.5 D.43.已知橢圓:的左,右焦點(diǎn)分別為,,過的直線交橢圓于,兩點(diǎn),若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.4.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時(shí),,則()A.2 B. C.1 D.5.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.6.已知雙曲線:的左、右兩個(gè)焦點(diǎn)分別為,,若存在點(diǎn)滿足,則該雙曲線的離心率為()A.2 B. C. D.57.已知函數(shù),,若對,且,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.甲乙丙丁四人中,甲說:我年紀(jì)最大,乙說:我年紀(jì)最大,丙說:乙年紀(jì)最大,丁說:我不是年紀(jì)最大的,若這四人中只有一個(gè)人說的是真話,則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁9.設(shè),,是非零向量.若,則()A. B. C. D.10.根據(jù)最小二乘法由一組樣本點(diǎn)(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個(gè)樣本點(diǎn)落在回歸直線上B.若所有樣本點(diǎn)都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)11.下圖是我國第24~30屆奧運(yùn)獎牌數(shù)的回眸和中國代表團(tuán)獎牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團(tuán)的奧運(yùn)獎牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會中國代表團(tuán)的奧運(yùn)獎牌總數(shù)的中位數(shù)是54.512.已知集合,,,則集合()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記Sk=1k+2k+3k+……+nk,當(dāng)k=1,2,3,……時(shí),觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測,A﹣B=_____.14.在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓上,其中A(0,1)為直角頂點(diǎn).若該三角形的面積的最大值為,則實(shí)數(shù)a的值為_____.15.已知,則展開式的系數(shù)為__________.16.在平面直角坐標(biāo)系中,雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)在拋物線上,則實(shí)數(shù)的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,焦距為2,且經(jīng)過點(diǎn),斜率為的直線經(jīng)過點(diǎn),與橢圓交于,兩點(diǎn).(1)求橢圓的方程;(2)在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.18.(12分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。19.(12分)已知函數(shù),函數(shù)在點(diǎn)處的切線斜率為0.(1)試用含有的式子表示,并討論的單調(diào)性;(2)對于函數(shù)圖象上的不同兩點(diǎn),,如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)處的切線,則稱存在“跟隨切線”.特別地,當(dāng)時(shí),又稱存在“中值跟隨切線”.試問:函數(shù)上是否存在兩點(diǎn)使得它存在“中值跟隨切線”,若存在,求出的坐標(biāo),若不存在,說明理由.20.(12分)已知函數(shù),(Ⅰ)當(dāng)時(shí),證明;(Ⅱ)已知點(diǎn),點(diǎn),設(shè)函數(shù),當(dāng)時(shí),試判斷的零點(diǎn)個(gè)數(shù).21.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項(xiàng)是1.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,是數(shù)列的前項(xiàng)和,求使成立的正整數(shù)的值.22.(10分)設(shè)的內(nèi)角、、的對邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】

利用兩角和與差的余弦公式展開計(jì)算可得結(jié)果.【題目詳解】,.故選:A.【題目點(diǎn)撥】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.2、D【解題分析】

由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【題目詳解】設(shè)等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當(dāng)且僅當(dāng)時(shí),等號成立.故選:D.【題目點(diǎn)撥】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數(shù)列的知識,是一道中檔題.3、C【解題分析】

根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡后求得離心率.【題目詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【題目點(diǎn)撥】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.4、D【解題分析】

說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計(jì)算函數(shù)值.【題目詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【題目點(diǎn)撥】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).5、D【解題分析】

因?yàn)椋?,所以且在上單調(diào)遞減,且所以,所以,又因?yàn)?,,所以,所?故選:D.【題目點(diǎn)撥】本題考查利用指對數(shù)函數(shù)的單調(diào)性比較指對數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.6、B【解題分析】

利用雙曲線的定義和條件中的比例關(guān)系可求.【題目詳解】.選B.【題目點(diǎn)撥】本題主要考查雙曲線的定義及離心率,離心率求解時(shí),一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.7、D【解題分析】

先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個(gè)根求參數(shù)范圍即可.【題目詳解】因?yàn)椋?,?dāng)時(shí),,故在區(qū)間上單調(diào)遞減;當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增;當(dāng)時(shí),令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時(shí),趨近于正無窮;對函數(shù),當(dāng)時(shí),;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)研究由方程根的個(gè)數(shù)求參數(shù)范圍的問題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問題,屬綜合困難題.8、C【解題分析】

分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個(gè)說的是真話,即可求得年紀(jì)最大者,即可求得答案.【題目詳解】①假設(shè)甲說的是真話,則年紀(jì)最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個(gè)人說的是真話,故甲說的不是真話,年紀(jì)最大的不是甲;②假設(shè)乙說的是真話,則年紀(jì)最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個(gè)人說的是真話,故乙說謊,年紀(jì)最大的也不是乙;③假設(shè)丙說的是真話,則年紀(jì)最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個(gè)人說的是真話,故丙在說謊,年紀(jì)最大的也不是乙;④假設(shè)丁說的是真話,則年紀(jì)最大的不是丁,而已知只有一個(gè)人說的是真話,那么甲也說謊,說明甲也不是年紀(jì)最大的,同時(shí)乙也說謊,說明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【題目點(diǎn)撥】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.9、D【解題分析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實(shí)有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對解含垂直關(guān)系的問題往往有很好效果.10、D【解題分析】

對每一個(gè)選項(xiàng)逐一分析判斷得解.【題目詳解】回歸直線必過樣本數(shù)據(jù)中心點(diǎn),但樣本點(diǎn)可能全部不在回歸直線上﹐故A錯(cuò)誤;所有樣本點(diǎn)都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯(cuò)誤;若所有的樣本點(diǎn)都在回歸直線上,則的值與相等,故C錯(cuò)誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點(diǎn)分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【題目點(diǎn)撥】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.11、B【解題分析】

根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【題目詳解】A.中國代表團(tuán)的奧運(yùn)獎牌總數(shù)不是一直保持上升趨勢,29屆最多,錯(cuò)誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯(cuò)誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會中國代表團(tuán)的奧運(yùn)獎牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【題目點(diǎn)撥】此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡單題目.12、D【解題分析】

根據(jù)集合的混合運(yùn)算,即可容易求得結(jié)果.【題目詳解】,故可得.故選:D.【題目點(diǎn)撥】本題考查集合的混合運(yùn)算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

觀察知各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),據(jù)此計(jì)算得到答案.【題目詳解】根據(jù)所給的已知等式得到:各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【題目點(diǎn)撥】本題考查了歸納推理,意在考查學(xué)生的推理能力.14、3【解題分析】

設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0),聯(lián)立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【題目詳解】設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐標(biāo)(0,1),∴B的坐標(biāo)為(,k?1),即B(,),因此AB?,同理可得:AC?.∴Rt△ABC的面積為SAB?AC?令t,得S.∵t2,∴S△ABC.當(dāng)且僅當(dāng),即t時(shí),△ABC的面積S有最大值為.解之得a=3或a.∵a時(shí),t2不符合題意,∴a=3.故答案為:3.【題目點(diǎn)撥】本題考查了橢圓內(nèi)三角形面積的最值問題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.15、【解題分析】

先根據(jù)定積分求出的值,再用二項(xiàng)展開式公式即可求解.【題目詳解】因?yàn)樗缘耐?xiàng)公式為當(dāng)時(shí),當(dāng)時(shí),故展開式中的系數(shù)為故答案為:【題目點(diǎn)撥】此題考查定積分公式,二項(xiàng)展開式公式等知識點(diǎn),屬于簡單題目.16、【解題分析】

求出雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)坐標(biāo),并將該交點(diǎn)代入拋物線的方程,即可求出實(shí)數(shù)的方程.【題目詳解】雙曲線的半焦距為,則雙曲線的右準(zhǔn)線方程為,漸近線方程為,所以,該雙曲線右準(zhǔn)線與漸近線的交點(diǎn)為.由題意得,解得.故答案為:.【題目點(diǎn)撥】本題考查利用拋物線上的點(diǎn)求參數(shù),涉及到雙曲線的準(zhǔn)線與漸近線方程的應(yīng)用,考查計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在;實(shí)數(shù)的取值范圍是【解題分析】

(1)根據(jù)橢圓定義計(jì)算,再根據(jù),,的關(guān)系計(jì)算即可得出橢圓方程;(2)設(shè)直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關(guān)系求出的中點(diǎn)坐標(biāo),求出的中垂線與軸的交點(diǎn)橫,得出關(guān)于的函數(shù),利用基本不等式得出的范圍.【題目詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點(diǎn).設(shè)直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關(guān)系可得,設(shè)的中點(diǎn)為,,則,,線段的中垂線方程為:,令可得,即.,故,當(dāng)且僅當(dāng)即時(shí)取等號,,且.的取值范圍是,.【題目點(diǎn)撥】本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.18、(1)l的普通方程;C的直角坐標(biāo)方程;(2).【解題分析】

(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關(guān)于的方程,求解即可.【題目詳解】(1)由直線l的參數(shù)方程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標(biāo)方程.(2)將代入拋物線得由已知成等比數(shù)列,即,,,整理得(舍去)或.【題目點(diǎn)撥】熟練掌握極坐標(biāo)與直角坐標(biāo)的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵.19、(1),單調(diào)性見解析;(2)不存在,理由見解析【解題分析】

(1)由題意得,即可得;求出函數(shù)的導(dǎo)數(shù),再根據(jù)、、、分類討論,分別求出、的解集即可得解;(2)假設(shè)滿足條件的、存在,不妨設(shè),且,由題意得可得,令(),構(gòu)造函數(shù)(),求導(dǎo)后證明即可得解.【題目詳解】(1)由題可得函數(shù)的定義域?yàn)榍遥?,整理?.(ⅰ)當(dāng)時(shí),易知,,時(shí).故在上單調(diào)遞增,在上單調(diào)遞減.(ⅱ)當(dāng)時(shí),令,解得或,則①當(dāng),即時(shí),在上恒成立,則在上遞增.②當(dāng),即時(shí),當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.③當(dāng),即時(shí),當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.綜上,當(dāng)時(shí),在上單調(diào)遞增,在單調(diào)遞減.當(dāng)時(shí),在及上單調(diào)遞增;在上單調(diào)遞減.當(dāng)時(shí),在上遞增.當(dāng)時(shí),在及上單調(diào)遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設(shè)滿足條件的、存在,不妨設(shè),且,則,又,由題可知,整理可得:,令(),構(gòu)造函數(shù)().則,所以在上單調(diào)遞增,從而,所以方程無解,即無解.綜上,滿足條件的A、B不存在.【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.20、(Ⅰ)詳見解析;(Ⅱ)1.【解題分析】

(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論