河北省保定市重點高中2024屆高考數(shù)學(xué)試題全真模擬密押卷(三)_第1頁
河北省保定市重點高中2024屆高考數(shù)學(xué)試題全真模擬密押卷(三)_第2頁
河北省保定市重點高中2024屆高考數(shù)學(xué)試題全真模擬密押卷(三)_第3頁
河北省保定市重點高中2024屆高考數(shù)學(xué)試題全真模擬密押卷(三)_第4頁
河北省保定市重點高中2024屆高考數(shù)學(xué)試題全真模擬密押卷(三)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

河北省保定市重點高中2024屆高考數(shù)學(xué)試題全真模擬密押卷(三)注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知滿足,則()A. B. C. D.2.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.3.已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.4.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標(biāo)準(zhǔn)量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.45.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.6.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.7.函數(shù)的圖象大致為()A. B.C. D.8.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.9.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.10.已知橢圓,直線與直線相交于點,且點在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.11.已知復(fù)數(shù)滿足,則()A. B. C. D.12.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.10二、填空題:本題共4小題,每小題5分,共20分。13.已知,,其中,為正的常數(shù),且,則的值為_______.14.已知隨機變量,且,則______15.已知是拋物線的焦點,是上一點,的延長線交軸于點.若為的中點,則_________.16.在平面直角坐標(biāo)系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.選考科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、、、、八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布.(1)求物理原始成績在區(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學(xué)期望.(附:若隨機變量,則,,)18.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.19.(12分)的內(nèi)角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.20.(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.21.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.22.(10分)已知橢圓:的左、右焦點分別為,,焦距為2,且經(jīng)過點,斜率為的直線經(jīng)過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

利用兩角和與差的余弦公式展開計算可得結(jié)果.【題目詳解】,.故選:A.【題目點撥】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.2、C【解題分析】

設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進而得到切線方程,將點坐標(biāo)代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【題目詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【題目點撥】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點所在直線求解是解題的關(guān)鍵,屬于中檔題.3、A【解題分析】

由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【題目詳解】根據(jù)題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【題目點撥】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對新定義的理解.4、D【解題分析】

根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【題目詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【題目點撥】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎(chǔ)題.5、A【解題分析】

根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【題目詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當(dāng)且僅當(dāng)時,等號成立.的面積,所以面積的最大值為.故選:.【題目點撥】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運算,屬于中檔題.6、A【解題分析】

設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【題目詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【題目點撥】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.7、A【解題分析】

用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【題目詳解】因為,所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【題目點撥】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.8、B【解題分析】

根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【題目詳解】執(zhí)行框圖如下:初始值:,第一步:,此時不能輸出,繼續(xù)循環(huán);第二步:,此時不能輸出,繼續(xù)循環(huán);第三步:,此時不能輸出,繼續(xù)循環(huán);第四步:,此時不能輸出,繼續(xù)循環(huán);第五步:,此時不能輸出,繼續(xù)循環(huán);第六步:,此時要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【題目點撥】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.9、D【解題分析】

建立平面直角坐標(biāo)系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【題目詳解】如圖,原題等價于在直角坐標(biāo)系中,點,是第一象限內(nèi)的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設(shè),則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【題目點撥】本題考查立體幾何中點面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動點軌跡方程,進而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.10、A【解題分析】

先求得橢圓焦點坐標(biāo),判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【題目詳解】設(shè)是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【題目點撥】本小題主要考查直線與直線的位置關(guān)系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.11、A【解題分析】

由復(fù)數(shù)的運算法則計算.【題目詳解】因為,所以故選:A.【題目點撥】本題考查復(fù)數(shù)的運算.屬于簡單題.12、C【解題分析】

取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【題目詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【題目點撥】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

把已知等式變形,展開兩角和與差的三角函數(shù),結(jié)合已知求得值.【題目詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【題目點撥】本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.14、0.1【解題分析】

根據(jù)原則,可得,簡單計算,可得結(jié)果.【題目詳解】由題可知:隨機變量,則期望為所以故答案為:【題目點撥】本題考查正態(tài)分布的計算,掌握正態(tài)曲線的圖形以及計算,屬基礎(chǔ)題.15、【解題分析】

由題意可得,又由于為的中點,且點在軸上,所以可得點的橫坐標(biāo),代入拋物線方程中可求點的縱坐標(biāo),從而可求出點的坐標(biāo),再利用兩點間的距離公式可求得結(jié)果.【題目詳解】解:因為是拋物線的焦點,所以,設(shè)點的坐標(biāo)為,因為為的中點,而點的橫坐標(biāo)為0,所以,所以,解得,所以點的坐標(biāo)為所以,故答案為:【題目點撥】此題考查拋物線的性質(zhì),中點坐標(biāo)公式,屬于基礎(chǔ)題.16、【解題分析】

利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【題目詳解】解:直線與圓相切,圓心為由,得或,當(dāng)時,到直線的距離,不成立,當(dāng)時,與圓相交于,兩點,到直線的距離,故答案為.【題目點撥】考查直線與圓的位置關(guān)系,相切和相交問題,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)1636人;(Ⅱ)見解析.【解題分析】

(Ⅰ)根據(jù)正態(tài)曲線的對稱性,可將區(qū)間分為和兩種情況,然后根據(jù)特殊區(qū)間上的概率求出成績在區(qū)間內(nèi)的概率,進而可求出相應(yīng)的人數(shù);(Ⅱ)由題意得成績在區(qū)間[61,80]的概率為,且,由此可得的分布列和數(shù)學(xué)期望.【題目詳解】(Ⅰ)因為物理原始成績,所以.所以物理原始成績在(47,86)的人數(shù)為(人).(Ⅱ)由題意得,隨機抽取1人,其成績在區(qū)間[61,80]內(nèi)的概率為.所以隨機抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數(shù)學(xué)期望.【題目點撥】(1)解答第一問的關(guān)鍵是利用正態(tài)分布的三個特殊區(qū)間表示所求概率的區(qū)間,再根據(jù)特殊區(qū)間上的概率求解,解題時注意結(jié)合正態(tài)曲線的對稱性.(2)解答第二問的關(guān)鍵是判斷出隨機變量服從二項分布,然后可得分布列及其數(shù)學(xué)期望.當(dāng)被抽取的總體的容量較大時,抽樣可認(rèn)為是等可能的,進而可得隨機變量服從二項分布.18、(1)見解析;(2)最大值為.【解題分析】

(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進而可得出實數(shù)的最大值.【題目詳解】(1).當(dāng)時,函數(shù)單調(diào)遞減,則;當(dāng)時,函數(shù)單調(diào)遞增,則;當(dāng)時,函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當(dāng)且僅當(dāng)時等號成立,所以,實數(shù)的最大值為.【題目點撥】本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.19、(1);(2)【解題分析】

(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡,即可求得和,進而由正弦定理確定,代入整式即可求解.【題目詳解】(1)因為,所以由三角形面積公式及平面向量數(shù)量積運算可得,所以.因為,所以.(2)因為,所以由正弦定理代入化簡可得,由(1),代入可得,展開化簡可得,根據(jù)輔助角公式化簡可得.因為,所以,所以,所以為等腰三角形,且,所以.【題目點撥】本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運算,正弦和角公式及輔助角公式的簡單應(yīng)用,屬于基礎(chǔ)題.20、(1);(2).【解題分析】

(1)求導(dǎo)得到,討論和兩種情況,計算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調(diào)性得到函數(shù)最值,得到答案.【題目詳解】(1),①當(dāng)時恒成立,所以單調(diào)遞增,因為,所以有唯一零點,即符合題意;②當(dāng)時,令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當(dāng)即,所以符合題意,(ii)當(dāng)即時,因為,故存在,所以不符題意(iii)當(dāng)時,因為,設(shè),所以,單調(diào)遞增,即,故存在,使得,不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論