版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆四川涼山州高三下學(xué)期第一次調(diào)研考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列中,,,則數(shù)列前6項(xiàng)和為()A.18 B.24 C.36 D.722.在直角中,,,,若,則()A. B. C. D.3.設(shè)非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件4.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,,,那么在不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為()A. B. C. D.5.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.6.已知,是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于,兩點(diǎn),若,則△的內(nèi)切圓的半徑為()A. B. C. D.7.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機(jī)變量服從正態(tài)分布(),若,則D.設(shè)是實(shí)數(shù),“”是“”的充分不必要條件8.《周易》歷來被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對萬事萬物的深刻而又樸素的認(rèn)識,是中華人文文化的基礎(chǔ),它反映出中國古代的二進(jìn)制計(jì)數(shù)的思想方法.我們用近代術(shù)語解釋為:把陽爻“-”當(dāng)作數(shù)字“1”,把陰爻“--”當(dāng)作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號表示的二進(jìn)制數(shù)表示的十進(jìn)制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進(jìn)制數(shù)是()A.18 B.17 C.16 D.159.若的展開式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為()A.85 B.84 C.57 D.5610.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.311.已知曲線且過定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.12.若等差數(shù)列的前項(xiàng)和為,且,,則的值為().A.21 B.63 C.13 D.84二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某地一天從時(shí)的溫度變化曲線近似滿足函數(shù),則這段曲線的函數(shù)解析式為______________.14.某種圓柱形的如罐的容積為個(gè)立方單位,當(dāng)它的底面半徑和高的比值為______.時(shí),可使得所用材料最省.15.展開式中的系數(shù)為_________.16.已知,則_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.18.(12分)已知為坐標(biāo)原點(diǎn),單位圓與角終邊的交點(diǎn)為,過作平行于軸的直線,設(shè)與終邊所在直線的交點(diǎn)為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.19.(12分)本小題滿分14分)已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線截得的線段的長度20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:①點(diǎn)的極角;②面積的取值范圍.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若曲線、交于、兩點(diǎn),是曲線上的動(dòng)點(diǎn),求面積的最大值.22.(10分)已知函數(shù).(1)若不等式有解,求實(shí)數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實(shí)數(shù),,滿足,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項(xiàng)和公式可得結(jié)果.【題目詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【題目點(diǎn)撥】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于基礎(chǔ)題.2、C【解題分析】
在直角三角形ABC中,求得,再由向量的加減運(yùn)算,運(yùn)用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計(jì)算即可得到所求值.【題目詳解】在直角中,,,,,
,
若,則故選C.【題目點(diǎn)撥】本題考查向量的加減運(yùn)算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題.3、C【解題分析】
利用數(shù)量積的定義可得,即可判斷出結(jié)論.【題目詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【題目點(diǎn)撥】本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.4、B【解題分析】
先求出從不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【題目詳解】解:不超過18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【題目點(diǎn)撥】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.5、D【解題分析】
把5本書編號,然后用列舉法列出所有基本事件.計(jì)數(shù)后可求得概率.【題目詳解】3本不同的語文書編號為,2本不同的數(shù)學(xué)書編號為,從中任意取出2本,所有的可能為:共10個(gè),恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【題目點(diǎn)撥】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計(jì)數(shù)計(jì)算概率.6、B【解題分析】
設(shè)左焦點(diǎn)的坐標(biāo),由AB的弦長可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點(diǎn)的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個(gè)三角形的面積之和可得內(nèi)切圓的半徑.【題目詳解】由雙曲線的方程可設(shè)左焦點(diǎn),由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【題目點(diǎn)撥】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.7、D【解題分析】
由特稱命題的否定是全稱命題可判斷選項(xiàng)A;可能相交,可判斷B選項(xiàng);利用正態(tài)分布的性質(zhì)可判斷選項(xiàng)C;或,利用集合間的包含關(guān)系可判斷選項(xiàng)D.【題目詳解】命題“,”的否定形式是“,”,故A錯(cuò)誤;,,則可能相交,故B錯(cuò)誤;若,則,所以,故,所以C錯(cuò)誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【題目點(diǎn)撥】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關(guān)的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.8、B【解題分析】
由題意可知“屯”卦符號“”表示二進(jìn)制數(shù)字010001,將其轉(zhuǎn)化為十進(jìn)制數(shù)即可.【題目詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進(jìn)制數(shù)字010001,轉(zhuǎn)化為十進(jìn)制數(shù)的計(jì)算為1×20+1×24=1.故選:B.【題目點(diǎn)撥】本題主要考查數(shù)制是轉(zhuǎn)化,新定義知識的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.9、A【解題分析】
先求,再確定展開式中的有理項(xiàng),最后求系數(shù)之和.【題目詳解】解:的展開式中二項(xiàng)式系數(shù)和為256故,要求展開式中的有理項(xiàng),則則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為:故選:A【題目點(diǎn)撥】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.10、A【解題分析】
將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【題目詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因?yàn)橹本€與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【題目點(diǎn)撥】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.11、A【解題分析】
根據(jù)指數(shù)型函數(shù)所過的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【題目詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號成立,即時(shí)取得最小值.故選:A【題目點(diǎn)撥】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.12、B【解題分析】
由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【題目詳解】解:因?yàn)?,,所以,解可得,,,則.故選:B.【題目點(diǎn)撥】本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、,【解題分析】
根據(jù)圖象得出該函數(shù)的最大值和最小值,可得,,結(jié)合圖象求得該函數(shù)的最小正周期,可得出,再將點(diǎn)代入函數(shù)解析式,求出的值,即可求得該函數(shù)的解析式.【題目詳解】由圖象可知,,,,,從題圖中可以看出,從時(shí)是函數(shù)的半個(gè)周期,則,.又,,得,取,所以,.故答案為:,.【題目點(diǎn)撥】本題考查由圖象求函數(shù)解析式,考查計(jì)算能力,屬于中等題.14、【解題分析】
設(shè)圓柱的高為,底面半徑為,根據(jù)容積為個(gè)立方單位可得,再列出該圓柱的表面積,利用導(dǎo)數(shù)求出最值,從而進(jìn)一步得到圓柱的底面半徑和高的比值.【題目詳解】設(shè)圓柱的高為,底面半徑為.∵該圓柱形的如罐的容積為個(gè)立方單位∴,即.∴該圓柱形的表面積為.令,則.令,得;令,得.∴在上單調(diào)遞減,在上單調(diào)遞增.∴當(dāng)時(shí),取得最小值,即材料最省,此時(shí).故答案為:.【題目點(diǎn)撥】本題考查函數(shù)的應(yīng)用,解答本題的關(guān)鍵是寫出表面積的表示式,再利用導(dǎo)數(shù)求函數(shù)的最值,屬中檔題.15、【解題分析】
變換,根據(jù)二項(xiàng)式定理計(jì)算得到答案.【題目詳解】的展開式的通項(xiàng)為:,,取和,計(jì)算得到系數(shù)為:.故答案為:.【題目點(diǎn)撥】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.16、【解題分析】
化簡得,利用周期即可求出答案.【題目詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【題目點(diǎn)撥】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在為增函數(shù);證明見解析(2)【解題分析】
(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類討論思想和導(dǎo)數(shù)性質(zhì)求出實(shí)數(shù)的取值范圍.【題目詳解】(1)當(dāng)時(shí),.記,則,當(dāng)時(shí),,.所以,所以在單調(diào)遞增,所以.因?yàn)椋?,所以在為增函?shù).(2)由題意,得,記,則,令,則,當(dāng)時(shí),,,所以,所以在為增函數(shù),即在單調(diào)遞增,所以.①當(dāng),,恒成立,所以為增函數(shù),即在單調(diào)遞增,又,所以,所以在為增函數(shù),所以所以滿足題意.②當(dāng),,令,,因?yàn)?,所以,故在單調(diào)遞增,故,即.故,又在單調(diào)遞增,由零點(diǎn)存在性定理知,存在唯一實(shí)數(shù),,當(dāng)時(shí),,單調(diào)遞減,即單調(diào)遞減,所以,此時(shí)在為減函數(shù),所以,不合題意,應(yīng)舍去.綜上所述,的取值范圍是.【題目點(diǎn)撥】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值和零點(diǎn)及不等式恒成立等問題,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想,考查了學(xué)生的邏輯推理和運(yùn)算求解能力,屬于難題.18、(1);(2).【解題分析】
(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【題目詳解】(1)因?yàn)?,,所以,,所以函?shù)的最小正周期為.(2)因?yàn)?,所以,所以,故函?shù)在區(qū)間上的值域?yàn)?【題目點(diǎn)撥】本題考查正弦型函數(shù)的周期和值域,運(yùn)用到向量的坐標(biāo)運(yùn)算、降冪公式和二倍角的正弦公式,考查化簡和計(jì)算能力.19、【解題分析】解:解:將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為,即,它表示以為圓心,2為半徑圓,………4分直線方程的普通方程為,………8分圓C的圓心到直線l的距離,……………10分故直線被曲線截得的線段長度為.……………14分20、(1)曲線為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)①②【解題分析】
(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)①將的極角代入直線的極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點(diǎn)到直線的距離的表達(dá)式,結(jié)合三角函數(shù)的知識求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點(diǎn)到直線的距離的最大值和最小值,進(jìn)而求得面積的取值范圍.【題目詳解】(1)因?yàn)榍€的參數(shù)方程為(為參數(shù)),因?yàn)閯t曲線的參數(shù)方程所以的普通方程為.所以曲線為圓心在原點(diǎn),半徑為2的圓.所以的極坐標(biāo)方程為,即.(2)①點(diǎn)的極角為,代入直線的極坐標(biāo)方程得點(diǎn)極徑為,且,所以為等腰三角形,又直線的普通方程為,又點(diǎn)的極角為銳角,所以,所以,所以點(diǎn)的極角為.②解法1:直線的普通方程為.曲線上的點(diǎn)到直線的距離.當(dāng),即()時(shí),取到最小值為.當(dāng),即()時(shí),取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因?yàn)閳A的半徑為2,且圓心到直線的距離,因?yàn)?,所以圓與直線相離.所以圓上的點(diǎn)到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024廣告代理合同模板下載
- 2024女職工特殊權(quán)益保護(hù)專項(xiàng)集體合同公司女職工特殊權(quán)益保護(hù)專項(xiàng)集體合同
- 2024個(gè)人耐用消費(fèi)品貸款合作合同范本
- 2024雞場租賃合同
- 分期還款協(xié)議書樣本
- 吉林省吉林市七年級上學(xué)期語文期中試卷2套【附答案】
- 2024商品購銷合同書版范本
- 上海臨時(shí)倉庫租賃合同
- 音樂會場地租賃合同范本
- 標(biāo)準(zhǔn)汽車租賃合同樣式
- 肥料創(chuàng)業(yè)計(jì)劃書
- 信息通信網(wǎng)絡(luò)運(yùn)行管理員(高級)理論考試題庫(學(xué)員用)
- 公司卷煙物流管理規(guī)范
- 報(bào)告醫(yī)療器械不良事件
- 嬰幼兒托育服務(wù)與管理的職業(yè)生涯規(guī)劃職業(yè)目標(biāo)自我分析職業(yè)定位實(shí)施計(jì)劃
- 物聯(lián)網(wǎng)安全分析報(bào)告
- 黃芪對慢性疲勞綜合征康復(fù)中的臨床應(yīng)用及相關(guān)機(jī)制探究
- 物業(yè)管理工作量化細(xì)則
- 2024市場營銷學(xué)教師資格證試講授課教案
- 《高熱驚厥的急救》課件
- 語文教學(xué)之學(xué)理
評論
0/150
提交評論