版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省衡陽縣第五中學2024屆高三5月會考數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某高中高三(1)班為了沖刺高考,營造良好的學習氛圍,向班內(nèi)同學征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進行了問話,得到回復如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李2.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.3.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.4.已知數(shù)列的通項公式為,將這個數(shù)列中的項擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個數(shù)的和,則數(shù)列的前2020項和為()A. B. C. D.5.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績?nèi)鐖D所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人6.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.7.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.8.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.9.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.610.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.12.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費用比年的就醫(yī)費用增加了元,則該人年的儲畜費用為()A.元 B.元 C.元 D.元二、填空題:本題共4小題,每小題5分,共20分。13.邊長為2的正方形經(jīng)裁剪后留下如圖所示的實線圍成的部分,將所留部分折成一個正四棱錐.當該棱錐的體積取得最大值時,其底面棱長為________.14.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為______.15.展開式中項系數(shù)為160,則的值為______.16.某學校高一、高二、高三年級的學生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求函數(shù)的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.18.(12分)已知(1)當時,判斷函數(shù)的極值點的個數(shù);(2)記,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,求證:.19.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當時,求證:.20.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數(shù)的取值范圍21.(12分)已知函數(shù)和的圖象關(guān)于原點對稱,且.(1)解關(guān)于的不等式;(2)如果對,不等式恒成立,求實數(shù)的取值范圍.22.(10分)已知橢圓()的半焦距為,原點到經(jīng)過兩點,的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
根據(jù)題意,分別假設(shè)一個正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【題目詳解】解:由題意知,若只有小王的說法正確,則小王對應(yīng)“入班即靜”,而否定小董說法后得出:小王對應(yīng)“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應(yīng)“天道酬勤”,否定小李的說法后得出:小李對應(yīng)“細節(jié)決定成敗”,所以剩下小王對應(yīng)“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應(yīng)“天道酬勤”,所以得出“細節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【題目點撥】本題考查推理證明的實際應(yīng)用.2、A【解題分析】
列出每一步算法循環(huán),可得出輸出結(jié)果的值.【題目詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【題目點撥】本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.3、B【解題分析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.4、D【解題分析】
由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【題目詳解】由題意,設(shè)每一行的和為故因此:故故選:D【題目點撥】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.5、D【解題分析】
根據(jù)題意分別計算出物理等級為,化學等級為的學生人數(shù)以及物理等級為,化學等級為的學生人數(shù),結(jié)合表格中的數(shù)據(jù)進行分析,可得出合適的選項.【題目詳解】根據(jù)題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數(shù)最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【題目點撥】本題考查合情推理,考查推理能力,屬于中等題.6、D【解題分析】
依次將選項中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【題目詳解】當時,在上不單調(diào),故A不正確;當時,在上單調(diào)遞減,故B不正確;當時,在上不單調(diào),故C不正確;當時,在上單調(diào)遞增,故D正確.故選:D【題目點撥】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導公式的應(yīng)用,是一道容易題.7、B【解題分析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【題目詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【題目點撥】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.8、D【解題分析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【題目詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【題目點撥】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.9、A【解題分析】
由圓心到漸近線的距離等于半徑列方程求解即可.【題目詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【題目點撥】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.10、B【解題分析】
三視圖對應(yīng)的幾何體為如圖所示的幾何體,利用割補法可求其體積.【題目詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【題目點撥】本題考查三視圖以及不規(guī)則幾何體的體積,復原幾何體時注意三視圖中的點線關(guān)系與幾何體中的點、線、面的對應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補法來求其體積,本題屬于基礎(chǔ)題.11、B【解題分析】
根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【題目詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【題目點撥】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.12、A【解題分析】
根據(jù)2018年的家庭總收人為元,且就醫(yī)費用占得到就醫(yī)費用,再根據(jù)年的就醫(yī)費用比年的就醫(yī)費用增加了元,得到年的就醫(yī)費用,然后由年的就醫(yī)費用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費用占總收人求解.【題目詳解】因為2018年的家庭總收人為元,且就醫(yī)費用占所以就醫(yī)費用因為年的就醫(yī)費用比年的就醫(yī)費用增加了元,所以年的就醫(yī)費用元,而年的就醫(yī)費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【題目點撥】本題主要考查統(tǒng)計中的折線圖和條形圖的應(yīng)用,還考查了建模解模的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)題意,建立棱錐體積的函數(shù),利用導數(shù)求函數(shù)的最大值即可.【題目詳解】設(shè)底面邊長為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數(shù)在時取得最大值.故此時底面棱長.故答案為:.【題目點撥】本題考查棱錐體積的求解,涉及利用導數(shù)研究體積最大值的問題,屬綜合中檔題.14、【解題分析】
設(shè)圓柱的軸截面的邊長為x,可求得,代入圓柱的表面積公式,即得解【題目詳解】設(shè)圓柱的軸截面的邊長為x,則由,得,∴.故答案為:【題目點撥】本題考查了圓柱的軸截面和表面積,考查了學生空間想象,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于基礎(chǔ)題.15、-2【解題分析】
表示該二項式的展開式的第r+1項,令其指數(shù)為3,再代回原表達式構(gòu)建方程求得答案.【題目詳解】該二項式的展開式的第r+1項為令,所以,則故答案為:【題目點撥】本題考查由二項式指定項的系數(shù)求參數(shù),屬于簡單題.16、【解題分析】
根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.【題目詳解】設(shè)抽取的樣本為,則由題意得,解得.故答案為:【題目點撥】本題考查了分層抽樣的知識,算出抽樣比是解題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解題分析】
(1)由題意利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【題目詳解】解:(1)∵函數(shù),當時,,.(2)中,,∴.由余弦定理可得,當且僅當時,取等號,即的最大值為3.再根據(jù),故當取得最大值3時,取得最大值為.【題目點撥】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,所用公式較多,選用恰當?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題.18、(1)沒有極值點;(2)證明見解析【解題分析】
(1)求導可得,再求導可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設(shè),則可整理為,設(shè),利用導函數(shù)可得,即可求證.【題目詳解】(1)當時,,,所以在遞增,所以,所以在遞增,所以函數(shù)沒有極值點.(2)由題,,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設(shè),那么,所以,所以,即【題目點撥】本題考查利用導函數(shù)求函數(shù)的極值點,考查利用導函數(shù)解決雙變量問題,考查運算能力與推理論證能力.19、(1)的極小值為,無極大值.(2)見解析.【解題分析】
(1)對求導,確定函數(shù)單調(diào)性,得到函數(shù)極值.(2)構(gòu)造函數(shù),證明恒成立,得到,,得證.【題目詳解】(1)由題意知,,令,得,令,得.則在上單調(diào)遞減,在上單調(diào)遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【題目點撥】本題考查了函數(shù)的單調(diào)性,極值,不等式的證明,構(gòu)造函數(shù)是解題的關(guān)鍵.20、(1).(2).【解題分析】試題分析:(Ⅰ)通過討論x的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年日照客運資格證模擬考試
- 四川省內(nèi)江市黃家鎮(zhèn)桂花井初級中學2024-2025學年上學期七年級期中英語試卷
- 新疆烏魯木齊市沙依巴克區(qū)2024-2025學年九年級上學期期中考試數(shù)學試卷
- 軟件公司法定代表人聘用合同
- 冷庫租賃合同范本:實驗室專用
- 影視后期剪輯服務(wù)合同
- 木結(jié)構(gòu)房屋質(zhì)量保證合同
- 機場航站樓外墻施工安全協(xié)議
- 能源公司純水機租賃協(xié)議
- 地鐵建設(shè)項目合同分析表
- 小學語文五年級上冊第八單元“讀書明智”單元作業(yè)設(shè)計
- 10kV隔離開關(guān)技術(shù)規(guī)范書
- 方城縣城市運行管理服務(wù)平臺(智慧城管)項目方案匯報
- 第2章 空間數(shù)據(jù)結(jié)構(gòu)
- 石油煉化廠項目保險建議書課件
- 三審制及工作制度
- 《影視美學》課件
- 靜電危害與預(yù)防
- 鍋爐技師職業(yè)技能鑒定考試題庫及答案(最全版)
- 吸附式空氣干燥機操作規(guī)程
- 防電信網(wǎng)絡(luò)詐騙知識競賽題庫
評論
0/150
提交評論