![2023-2024學年甘肅省夏河縣數(shù)學九年級第一學期期末檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view11/M01/3C/15/wKhkGWWTQEmAaxa5AAIojXtnaTQ844.jpg)
![2023-2024學年甘肅省夏河縣數(shù)學九年級第一學期期末檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view11/M01/3C/15/wKhkGWWTQEmAaxa5AAIojXtnaTQ8442.jpg)
![2023-2024學年甘肅省夏河縣數(shù)學九年級第一學期期末檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view11/M01/3C/15/wKhkGWWTQEmAaxa5AAIojXtnaTQ8443.jpg)
![2023-2024學年甘肅省夏河縣數(shù)學九年級第一學期期末檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view11/M01/3C/15/wKhkGWWTQEmAaxa5AAIojXtnaTQ8444.jpg)
![2023-2024學年甘肅省夏河縣數(shù)學九年級第一學期期末檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view11/M01/3C/15/wKhkGWWTQEmAaxa5AAIojXtnaTQ8445.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年甘肅省夏河縣數(shù)學九年級第一學期期末檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,△ABC的內切圓⊙O與BC、CA、AB分別相切于點D、E、F,且AB=5,BC=13,CA=12,則陰影部分(即四邊形AEOF)的面積是()A.4 B.6.25 C.7.5 D.92.若,則的值為()A. B. C. D.3.如圖,以AB為直徑,點O為圓心的半圓經過點C,若AC=BC=,則圖中陰影部分的面積是()A. B. C. D.4.的半徑為,弦,,,則、間的距離是:()A. B. C.或 D.以上都不對5.下列圖形中,是相似形的是()A.所有平行四邊形 B.所有矩形 C.所有菱形 D.所有正方形6.已知⊙O的半徑為1,點P到圓心的距離為d,若關于x的方程x-2x+d=0有實數(shù)根,則點P()A.在⊙O的內部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O內部7.已知二次函數(shù)y=(a≠0)的圖像如圖所示,對稱軸為x=-1,則下列式子正確的個數(shù)是()(1)abc>0(2)2a+b=0(3)4a+2b+c<0(4)b2-4ac<0A.1個 B.2個 C.3個 D.4個8.從下列兩組卡片中各摸一張,所摸兩張卡片上的數(shù)字之和為5的概率是()第一組:1,2,3第二組:2,3,4A. B. C. D.9.若數(shù)據(jù)2,x,4,8的平均數(shù)是4,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)是()A.3和2
B.4和2
C.2和2
D.2和410.如圖,若AB是⊙0的直徑,CD是⊙O的弦,∠ABD=56°,則∠BCD是()A.34° B.44° C.54° D.56°11.若關于的方程是一元二次方程,則的取值范圍是()A. B. C. D.12.如圖,在平面直角坐標系中,已知⊙D經過原點O,與x軸、y軸分別交于A、B兩點,B點坐標為(0,2),OC與⊙D相交于點C,∠OCA=30°,則圖中陰影部分的面積為()A.2π﹣2 B.4π﹣ C.4π﹣2 D.2π﹣二、填空題(每題4分,共24分)13.已知關于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有兩個實數(shù)根,則m的取值范圍是_____.14.已知圓錐的側面積為20πcm2,母線長為5cm,則圓錐底面半徑為______cm.15.反比例函數(shù)的圖象在每一象限,函數(shù)值都隨增大而減小,那么的取值范圍是__________.16.點(2,3)關于原點對稱的點的坐標是_____.17.已知甲、乙兩組數(shù)據(jù)的折線圖如圖,設甲、乙兩組數(shù)據(jù)的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)18.拋物線y=x2﹣4x﹣5與x軸的兩交點間的距離為___________.三、解答題(共78分)19.(8分)綜合與探究:三角形旋轉中的數(shù)學問題.實驗與操作:
Rt△ABC中,∠ABC=90°,∠ACB=30°.將Rt△ABC繞點A按順時針方向旋轉得到Rt△AB′C′(點B′,C′分別是點B,C的對應點).設旋轉角為α(0°<α<180°),旋轉過程中直線B′B和線段CC′相交于點D.猜想與證明:(1)如圖1,當AC′經過點B時,探究下列問題:①此時,旋轉角α的度數(shù)為°;②判斷此時四邊形AB′DC的形狀,并證明你的猜想;(2)如圖2,當旋轉角α=90°時,求證:CD=C′D;(3)如圖3,當旋轉角α在0°<α<180°范圍內時,連接AD,直接寫出線段AD與C之間的位置關系(不必證明).20.(8分)計算:(1)sin260°﹣tan30°?cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°21.(8分)閱讀理解:如圖,在紙面上畫出了直線l與⊙O,直線l與⊙O相離,P為直線l上一動點,過點P作⊙O的切線PM,切點為M,連接OM、OP,當△OPM的面積最小時,稱△OPM為直線l與⊙O的“最美三角形”.解決問題:(1)如圖1,⊙A的半徑為1,A(0,2),分別過x軸上B、O、C三點作⊙A的切線BM、OP、CQ,切點分別是M、P、Q,下列三角形中,是x軸與⊙A的“最美三角形”的是.(填序號)①ABM;②AOP;③ACQ(2)如圖2,⊙A的半徑為1,A(0,2),直線y=kx(k≠0)與⊙A的“最美三角形”的面積為,求k的值.(3)點B在x軸上,以B為圓心,為半徑畫⊙B,若直線y=x+3與⊙B的“最美三角形”的面積小于,請直接寫出圓心B的橫坐標的取值范圍.22.(10分)在一個不透明的袋子里,裝有3個分別標有數(shù)字﹣1,1,2的乒乓球,他們的形狀、大小、質地等完全相同,隨機取出1個乒乓球.(1)寫出取一次取到負數(shù)的概率;(2)小明隨機取出1個乒乓球,記下數(shù)字后放回袋子里,搖勻后再隨機取出1個乒兵球,記下數(shù)字.用畫樹狀圖或列表的方法求“第一次得到的數(shù)與第二次得到的數(shù)的積為正數(shù)”發(fā)生的概率.23.(10分)如圖,某小區(qū)規(guī)劃在一個長16m,寬9m的矩形場地ABCD上,修建同樣寬的小路,使其中兩條與AB平行,另一條與AD平行,其余部分種草,若草坪部分總面積為112m2,求小路的寬.24.(10分)據(jù)媒體報道,我國2009年公民出境旅游總人數(shù)約5000萬人次,2011年公民出境旅游總人數(shù)約7200萬人次,若2010年、2011年公民出境旅游總人數(shù)逐年遞增,請解答下列問題:(1)求這兩年我國公民出境旅游總人數(shù)的年平均增長率;(2)如果2012年仍保持相同的年平均增長率,請你預測2012年我國公民出境旅游總人數(shù)約多少萬人次.25.(12分)如圖,⊙O是Rt△ABC的外接圓,直徑AB=4,直線EF經過點C,AD⊥EF于點D,∠ACD=∠B.(1)求證:EF是⊙O的切線;(2)若AD=1,求BC的長;(3)在(2)的條件下,求圖中陰影部分的面積.26.甲口袋中裝有兩個相同的小球,它們分別寫有1和2;乙口袋中裝有三個相同的小球,它們分別寫有3、4和5;丙口袋中裝有兩個相同的小球,它們分別寫有6和1.從這3個口袋中各隨機地取出1個小球.(1)取出的3個小球上恰好有兩個偶數(shù)的概率是多少?(2)取出的3個小球上全是奇數(shù)的概率是多少?
參考答案一、選擇題(每題4分,共48分)1、A【分析】先利用勾股定理判斷△ABC為直角三角形,且∠BAC=90°,繼而證明四邊形AEOF為正方形,設⊙O的半徑為r,利用面積法求出r的值即可求得答案.【詳解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC為直角三角形,且∠BAC=90°,∵⊙O為△ABC內切圓,∴∠AFO=∠AEO=90°,且AE=AF,∴四邊形AEOF為正方形,設⊙O的半徑為r,∴OE=OF=r,∴S四邊形AEOF=r2,連接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四邊形AEOF=r2=4,故選A.【點睛】本題考查了三角形的內切圓,勾股定理的逆定理,正方形判定與性質,面積法等,正確把握相關知識是解題的關鍵.2、A【分析】根據(jù)比例的性質,可用b表示a,根據(jù)分式的性質,可得答案.【詳解】由,得4b=a?b.,解得a=5b,故選:A.【點睛】本題考查了比例的性質,利用比例的性質得出b表示a是解題關鍵.3、A【分析】先利用圓周角定理得到∠ACB=90°,則可判斷△ACB為等腰直角三角形,接著判斷△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根據(jù)扇形的面積公式計算圖中陰影部分的面積.【詳解】∵AB為直徑,∴∠ACB=90°,∵AC=BC=,∴△ACB為等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S陰影部分=S扇形AOC=.故選A.【點睛】本題考查了扇形面積的計算:圓面積公式:S=πr2,(2)扇形:由組成圓心角的兩條半徑和圓心角所對的弧所圍成的圖形叫做扇形.求陰影面積常用的方法:①直接用公式法;②和差法;③割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.4、C【分析】先根據(jù)勾股定理求出OE=6,OF=8,再分AB、CD在點O的同側時,AB、CD在點O的兩側時兩種情況分別計算求出EF即可.【詳解】如圖,過點O作OF⊥CD于F,交AB于點E,∵,∴OE⊥AB,在Rt△AOE中,OA=10,AE=AB=8,∴OE=6,在Rt△COF中,OC=10,CF=CD=6,∴OF=8,當AB、CD在點O的同側時,、間的距離EF=OF-OE=8-6=2;當AB、CD在點O的兩側時,AB、CD間的距離EF=OE+OF=6+8=14,故選:C.【點睛】此題考查了圓的垂徑定理,勾股定理,在圓中通常利用垂徑定理和勾股定理求半徑、弦的一半、弦心距三者中的一個量.5、D【分析】根據(jù)對應角相等,對應邊成比例的兩個多邊形相似,依次分析各項即可判斷.【詳解】所有的平行四邊形、矩形、菱形均不一定是相似多邊形,而所有的正方形都是相似多邊形,故選D.【點睛】本題是判定多邊形相似的基礎應用題,難度一般,學生只需熟練掌握特殊四邊形的性質即可輕松完成.6、D【分析】先根據(jù)條件x
2
-2x+d=0有實根得出判別式大于或等于0,求出d的范圍,進而得出d與r的數(shù)量關系,即可判斷點P和⊙O的關系..【詳解】解:∵關于x的方程x
2
-2x+d=0有實根,∴根的判別式△=(-2)
2
-4×d≥0,解得d≤1,∵⊙O的半徑為r=1,∴d≤r∴點P在圓內或在圓上.故選:D.【點睛】本題考查了點和圓的位置關系,由點到圓心的距離和半徑的數(shù)量關系對點和圓的位置關系作出判斷是解答此題的重要途徑,即當d>r時,點在圓外,當d=r時,點在圓上,當d<r時,點在圓內.7、B【詳解】由圖像可知,拋物線開口向下,a<0,圖像與y軸交于正半軸,c>0,對稱軸為直線x=-1<0,即-<0,因為a<0,所以b<0,所以abc>0,故(1)正確;由-=-1得,b=2a,即2a-b=0,故(2)錯誤;由圖像可知當x=2時,y<0,即4a+2b+c<0,故(3)正確;該圖像與x軸有兩個交點,即b2-4ac>0,故(4)錯誤,本題正確的有兩個,故選B.8、D【分析】根據(jù)題意,通過樹狀圖法即可得解.【詳解】如下圖,畫樹狀圖可知,從兩組卡片中各摸一張,一共有9種可能性,兩張卡片上的數(shù)字之和為5的可能性有3種,則P(兩張卡片上的數(shù)字之和為5),故選:D.【點睛】本題屬于概率初步題,熟練掌握樹狀圖法或者列表法是解決本題的關鍵.9、A【分析】平均數(shù)的計算方法是求出所有數(shù)據(jù)的和,然后除以數(shù)據(jù)的總個數(shù);據(jù)此先求得x的值,再將數(shù)據(jù)按從小到大排列,將中間的兩個數(shù)求平均值即可得到中位數(shù),眾數(shù)是出現(xiàn)次數(shù)最多的數(shù).【詳解】這組數(shù)的平均數(shù)為=4,解得:x=2;所以這組數(shù)據(jù)是:2,2,4,8;中位數(shù)是(2+4)÷2=3,2在這組數(shù)據(jù)中出現(xiàn)2次,4出現(xiàn)一次,8出現(xiàn)一次,所以眾數(shù)是2;故選:A.【點睛】本題考查平均數(shù)和中位數(shù)和眾數(shù)的概念.10、A【分析】根據(jù)圓周角定理由AB是⊙O的直徑可得∠ADB=90°,再根據(jù)互余關系可得∠A=90°-∠∠ABD=34°,最后根據(jù)圓周角定理可求解.【詳解】解:∵AB是⊙O的直徑,∴∠ADB=90°,∵∠ABD=56°,∴∠A=90°-∠ABD=34°,∴∠BCD=∠A=34°,故答案選A.【點睛】本題主要考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對圓心角的一半.解題的關鍵是正確利用圖中各角之間的關系進行計算.11、A【解析】要使方程為一元二次方程,則二次項系數(shù)不能為0,所以令二次項系數(shù)不為0即可.【詳解】解:由題知:m+1≠0,則m≠-1,故選:A.【點睛】本題主要考查的是一元二次方程的性質,二次項系數(shù)不為0,掌握這個知識點是解題的關鍵.12、A【分析】從圖中明確S陰=S半-S△,然后依公式計算即可.【詳解】∵∠AOB=90°,∴AB是直徑,連接AB,根據(jù)同弧對的圓周角相等得∠OBA=∠C=30°,由題意知OB=2,∴OA=OBtan∠ABO=OBtan30°=2,AB=AO÷sin30°=4即圓的半徑為2,∴陰影部分的面積等于半圓的面積減去△ABO的面積,故選A.【點睛】輔助線問題是初中數(shù)學的難點,能否根據(jù)題意準確作出適當?shù)妮o助線很能反映一個學生的對圖形的理解能力,因而是中考的熱點,尤其在壓軸題中比較常見,需特別注意.二、填空題(每題4分,共24分)13、且.【詳解】∵關于x的一元二次方程(m﹣1)1x1+(1m+1)x+1=0有兩個不相等的實數(shù)根,∴△=b1﹣4ac>0,即(1m+1)1﹣4×(m﹣1)1×1>0,解這個不等式得,m>,又∵二次項系數(shù)是(m﹣1)1≠0,∴m≠1故M得取值范圍是m>且m≠1.故答案為m>且m≠1.考點:根的判別式14、1【分析】由圓錐的母線長是5cm,側面積是20πcm2,求圓錐側面展開扇形的弧長,然后再根據(jù)錐的側面展開扇形的弧長等于圓錐的底面周長求解.【詳解】解:由圓錐的母線長是5cm,側面積是20πcm2,根據(jù)圓錐的側面展開扇形的弧長為:=8π,再根據(jù)錐的側面展開扇形的弧長等于圓錐的底面周長,可得=1cm.故答案為:1.【點睛】本題考查圓錐的計算,掌握公式正確計算是解題關鍵.15、m>-1【分析】根據(jù)比例系數(shù)大于零列式求解即可.【詳解】由題意得m+1>0,∴m>-1.故答案為:m>-1.【點睛】本題考查了反比例函數(shù)的圖象與性質,反比例函數(shù)(k是常數(shù),k≠0)的圖象是雙曲線,當k>0,反比例函數(shù)圖象的兩個分支在第一、三象限,在每一象限內,y隨x的增大而減??;當k<0,反比例函數(shù)圖象的兩個分支在第二、四象限,在每一象限內,y隨x的增大而增大.16、(-2,-3).【解析】根據(jù)“關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù)”可知:點P(2,3)關于原點對稱的點的坐標是(?2,?3).故答案為(-2,-3).17、>【解析】要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據(jù)折線統(tǒng)計圖結合根據(jù)平均數(shù)的計算公式求出這兩組數(shù)據(jù)的平均數(shù);接下來根據(jù)方差的公式求出甲、乙兩個樣本的方差,然后比較即可解答題目.【詳解】甲組的平均數(shù)為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數(shù)為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【點睛】本題考查的知識點是方差,算術平均數(shù),折線統(tǒng)計圖,解題的關鍵是熟練的掌握方差,算術平均數(shù),折線統(tǒng)計圖.18、1【分析】根據(jù)拋物線y=x2-4x-5,可以求得拋物線y=x2-4x-5與x軸的交點坐標,即可求得拋物線y=x2-4x-5與x軸的兩交點間的距離.【詳解】解:∵y=x2-4x-5=(x-5)(x+1),∴當y=0時,x1=5,x2=-1,∴拋物線y=x2-4x-5與x軸的兩交點的坐標為(5,0),(-1,0),∴拋物線y=x2-4x-5與x軸的兩交點間的距離為:5-(-1)=5+1=1,故答案為:1.【點睛】本題主要考查拋物線與x軸的交點,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答。三、解答題(共78分)19、(1)①60;②四邊形AB′DC是平行四邊形,證明見解析.(2)證明見解析;(3)【分析】(1)①根據(jù)矩形的性質、旋轉的性質、等邊三角形的判定方法解題;②根據(jù)兩組對邊分別平行的四邊形是平行四邊形解題;(2)過點作的垂線,交于點E,由旋轉的性質得到對應邊、對應角相等,進而證明△CDB≌△,即可解題;(3)先證明,再由相似三角形的性質解題,進而證明即可證明.【詳解】解:(1)①60;②四邊形AB′DC是平行四邊形.證明:∵∠ABC=90°,∠ACB=30°,∴∠CAB=90°-30°=60°.∵Rt△AB′C′是由Rt△ABC繞點A順時針旋轉得到的,∴∠C′AB′=∠CAB=60°,,.與都是等邊三角形.∴∠ACC′=∠AB′B=60°.∵∠CAB′=∠CAB+∠C′AB′=120°,∴∠ACC′+∠CAB′=180°,∠CAB′+∠ABB′=180°.∴AB′//CD,AC//B′D.∴四邊形AB′DC是平行四邊形.(2)證明:過點作的垂線,交于點E,∴∠B′C′E=90°.∵Rt△AB′C′是由Rt△ABC繞點A順時針旋轉90°得到的,∴∠CAC′=∠BAB′=∠B′C′E=90°,,.∴∠AB=∠AB=45°,BC∥AB′∥C′E∵∠AC=∠ABC=90°,∴∠B=∠CBE=45°.∴∠=90°-45°=45°=∠B.∴.在△CBD和△ED中,∴△CDB≌△DE.∴CD=D.(3)AD⊥C,理由如下:設AC與D交于點O,連接AD,∴∠ADC′=180°-∠DAO-∠AC′C=180°-∠OB′C′-∠AB′B,,
【點睛】本題考查幾何綜合,其中涉及三角形的旋轉、等邊三角形的判定與性質、平行線的判定、平行四邊形的判定、全等三角形的判定等知識,綜合性較強,是常見考點,掌握相關知識、學會作適當輔助線是解題關鍵.20、(1);(2)2.【解析】根據(jù)特殊角的銳角三角函數(shù)的值即可求出答案.【詳解】(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【點睛】本題考查了銳角三角函數(shù)的定義,解題的關鍵是熟練運用特殊角的銳角三角函數(shù)的定義.21、(1)②;(2)±1;(3)<<或<<【分析】(1)本題先利用切線的性質,結合勾股定理以及三角形面積公式將面積最值轉化為線段最值,了解最美三角形的定義,根據(jù)圓心到直線距離最短原則解答本題.(2)本題根據(jù)k的正負分類討論,作圖后根據(jù)最美三角形的定義求解EF,利用勾股定理求解AF,進一步確定∠AOF度數(shù),最后利用勾股定理確定點F的坐標,利用待定系數(shù)法求k.(3)本題根據(jù)⊙B在直線兩側不同位置分類討論,利用直線與坐標軸的交點坐標確定∠NDB的度數(shù),繼而按照最美三角形的定義,分別以△BND,△BMN為媒介計算BD長度,最后與OD相減求解點B的橫坐標范圍.【詳解】(1)如下圖所示:∵PM是⊙O的切線,∴∠PMO=90°,當⊙O的半徑OM是定值時,,∵,∴要使面積最小,則PM最小,即OP最小即可,當OP⊥時,OP最小,符合最美三角形定義.故在圖1三個三角形中,因為AO⊥x軸,故△AOP為⊙A與x軸的最美三角形.故選:②.(2)①當k<0時,按題意要求作圖并在此基礎作FM⊥x軸,如下所示:按題意可得:△AEF是直線y=kx與⊙A的最美三角形,故△AEF為直角三角形且AF⊥OF.則由已知可得:,故EF=1.在△AEF中,根據(jù)勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根據(jù)勾股定理可得:MF=MO=1,故F(-1,1),將F點代入y=kx可得:.②當k>0時,同理可得k=1.故綜上:.(3)記直線與x、y軸的交點為點D、C,則,,①當⊙B在直線CD右側時,如下圖所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直線與⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半徑為,∴.當直線CD與⊙B相切時,,因為直線CD與⊙B相離,故BN>,此時BD>2,所以OB=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此時可利用勾股定理算得BD<,<=,則<<.②當⊙B在直線CD左側時,同理可得:<<.故綜上:<<或<<.【點睛】本題考查圓與直線的綜合問題,屬于創(chuàng)新題目,此類型題目解題關鍵在于了解題干所給示例,涉及動點問題時必須分類討論,保證不重不漏,題目若出現(xiàn)最值問題,需要利用轉化思想將面積或周長最值轉化為線段最值以降低解題難度,求解幾何線段時勾股定理極為常見.22、(1);(2)【分析】(1)由概率公式即可得出結果;(2)由樹狀圖得出第一次得到的數(shù)與第二次得到的數(shù)的積為正數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)取一次取到負數(shù)的概率為;(2)畫樹狀圖如下:共有9種等可能的結果,“第一次得到的數(shù)與第二次得到的數(shù)的積為正數(shù)”的有5種情況,∴“第一次得到的數(shù)與第二次得到的數(shù)的積為正數(shù)”的概率為.【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.23、小路的寬為2m.【解析】如果設小路的寬度為xm,那么整個草坪的長為(2﹣2x)m,寬為(9﹣x)m,根據(jù)題意即可得出方程.【詳解】設小路的寬度為xm,那么整個草坪的長為(2﹣2x)m,寬為(9﹣x)m.根據(jù)題意得:(2﹣2x)(9﹣x)=222解得:x2=2,x2=2.∵2>9,∴x=2不符合題意,舍去,∴x=2.答:小路的寬為2m.【點睛】本題考查了一元二次方程的應用,弄清“整個草坪的長和寬”是解決本題的關鍵.24、(1)20%(2)8640萬人次【分析】(1)設年平均增長率為x.根據(jù)題意2010年公民出境旅游總人數(shù)為5000(1+x)萬人次,2011年公民出境旅游總人數(shù)5000(1+x)2萬人次.根據(jù)題意得方程求解.(2)2012年我國公民出境旅游總人數(shù)約1(1+x)萬人次.【詳解】解:(1)設這兩年我國公民出境旅游總人數(shù)的年平均增長率為x.根據(jù)題意得5000(1+x)2=1.解得x1=0.2=20
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手辦公桌椅采購合同范本
- 2025年度貨物批量存放與倉儲管理合同范本
- 2025年制衣服裝等行業(yè)深度研究分析報告
- 2025年度醫(yī)療健康企業(yè)獨立董事任聘與醫(yī)療質量管理協(xié)議
- 2025年度股權抵押擔保創(chuàng)業(yè)孵化合同
- 申請書的正文主要包括
- 2025年圓型鎳氫電池項目投資可行性研究分析報告
- 休學申請書范文
- 2025年圍欄物流臺車行業(yè)深度研究分析報告-20241226-194831
- 2025年度建筑勞務用工綠色施工合同范本
- 春季安全行車教育培訓
- 2024年6月第3套英語六級真題
- 2024年江蘇省公務員錄用考試《行測》題(A類)
- 2024年10月時政100題(附答案)
- 江蘇省無錫市2024年中考數(shù)學試卷(含答案)
- 2024年保密知識測試試題及答案(奪冠)
- 北師大版八年級下冊因式分解(分組分解法)100題及答案
- 湖南2024年湖南省衛(wèi)生健康委直屬事業(yè)單位招聘276人筆試歷年典型考題及考點附答案解析
- SF-36生活質量調查表(SF-36-含評分細則)
- 2023年陜西西安亮麗電力集團有限責任公司招聘考試真題
- 不需公證的遺囑范文
評論
0/150
提交評論