版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年吉林省長春市德惠市大區(qū)數(shù)學九年級第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.拋物線y=(x-3)2+4的頂點坐標是()A.(-1,2)B.(-1,-2)C.(1,-2)D.(3,4)2.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,則BC=()A.15 B.6 C.9 D.83.下列圖標中,是中心對稱圖形的是()A. B. C. D.4.若二次函數(shù)的圖象與軸僅有一個公共點,則常數(shù)的為()A.1 B.±1 C.-1 D.5.有一副三角板,含45°的三角板的斜邊與含30°的三角板的長直角邊相等,如圖,將這副三角板直角頂點重合拼放在一起,點B,C,E在同一直線上,若BC=2,則AF的長為()A.2 B.2﹣2 C.4﹣2 D.2﹣6.一元二次方程3x2﹣x﹣2=0的二次項系數(shù)是3,它的一次項系數(shù)是()A.﹣1 B.﹣2 C.1 D.07.如圖,Rt△ABC中,AB=9,BC=6,∠B=90°,將△ABC折疊,使A點與BC的中點D重合,折痕為PQ,則△PQD的面積為()A. B. C. D.8.如圖,平行四邊形中,為邊的中點,交于點,則圖中陰影部分面積與平行四邊形的面積之比為()A. B. C. D.9.下列四個幾何體中,左視圖為圓的是()A. B. C. D.10.已知a、b滿足a2﹣6a+2=0,b2﹣6b+2=0,則=()A.﹣6 B.2 C.16 D.16或2二、填空題(每小題3分,共24分)11.如圖,在中,,,,將繞點逆時針旋轉(zhuǎn)得到,連接,則的長為__________.12.如圖,物理課上張明做小孔成像試驗,已知蠟燭與成像板之間的距離為24cm,要使燭焰的像A′B′是燭焰AB的2倍,則蠟燭與成像板之間的小孔紙板應(yīng)放在離蠟燭_____cm的地方.13.在一個不透明的盒子中裝有n個小球,它們只有顏色上的區(qū)別,其中有2個紅球,每次摸球前先將盒中的球搖勻,隨機摸出一個球記下顏色后再放回盒中,通過大量重復試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定于0.2,那么可以推算出n大約是
________.14.閱讀下列材料,我們知道,因此將的分子分母同時乘以“”,分母就變成了4,即,從而可以達到對根式化簡的目的,根據(jù)上述閱讀材料解決問題:若,則代數(shù)式m5+2m4﹣2017m3+2016的值是_____.15.如圖,在?ABCD中,AB=6,BC=6,∠D=30°,點E是AB邊的中點,點F是BC邊上一動點,將△BEF移沿直線EF折疊,得到△GEF,當FG∥AC時,BF的長為_____.16.如圖,河的兩岸、互相平行,點、、是河岸上的三點,點是河岸上一個建筑物,在處測得,在處測得,若米,則河兩岸之間的距離約為______米(,結(jié)果精確到0.1米)(必要可用參考數(shù)據(jù):)17.如圖,∠MON=90°,直角三角形ABC斜邊的端點A,B別在射線OM,ON上滑動,BC=1,∠BAC=30°,連接OC.當AB平分OC時,OC的長為______.18.如圖,在平面直角坐標系中,和是以坐標原點為位似中心的位似圖形,且點B(3,1),,(6,2),若點(5,6),則點的坐標為________.三、解答題(共66分)19.(10分)如圖,拋物線的圖象經(jīng)過點,頂點的縱坐標為,與軸交于兩點.(1)求拋物線的解析式.(2)連接為線段上一點,當時,求點的坐標.20.(6分)已知:矩形中,,,點,分別在邊,上,直線交矩形對角線于點,將沿直線翻折,點落在點處,且點在射線上.(1)如圖1所示,當時,求的長;(2)如圖2所示,當時,求的長;(3)請寫出線段的長的取值范圍,及當?shù)拈L最大時的長.21.(6分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0).(1)求點B的坐標;(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標;②設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.22.(8分)[問題發(fā)現(xiàn)]如圖①,在中,點是的中點,點在邊上,與相交于點,若,則_____;[拓展提高]如圖②,在等邊三角形中,點是的中點,點在邊上,直線與相交于點,若,求的值.[解決問題]如圖③,在中,,點是的中點,點在直線上,直線與直線相交于點,.請直接寫出的長.23.(8分)已知拋物線與軸交于點和且過點.求拋物線的解析式;拋物線的頂點坐標;取什么值時,隨的增大而增大;取什么值時,隨增大而減小.24.(8分)如圖,是半徑為1的的內(nèi)接正十邊形,平分(1)求證:;(2)求證:25.(10分)尺規(guī)作圖:如圖,已知正方形ABCD,E在BC邊上,求作AE上一點P,使△ABE∽△DPA(不寫過程,保留作圖痕跡).26.(10分)如圖,是平行四邊形的對角線,.(1)求證:四邊形是菱形;(2)若,,求菱形的面積.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據(jù)拋物線解析式y(tǒng)=(x-3)2+4,可直接寫出頂點坐標.【詳解】y=(x-3)2+4的頂點坐標是(3,4).故選D.【點睛】此題考查了二次函數(shù)y=a(x-h)2+k的性質(zhì),對于二次函數(shù)y=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=k.2、D【分析】首先根據(jù)正弦函數(shù)的定義求得AC的長,然后利用勾股定理求得BC的長.【詳解】解:∴直角△ABC中,故選:D.【點睛】本題考查的是銳角三角形的正弦函數(shù),理解熟記正弦三角函數(shù)定義是解決本題的關(guān)鍵.3、C【解析】根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、是中心對稱圖形,故本選項正確;D、不是中心對稱圖形,故本選項錯誤.故選:C.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、C【分析】函數(shù)為二次函數(shù)與x軸僅有一個公共點,所以根據(jù)△=0即可求出k的值.【詳解】解:當時,二次函數(shù)y=kx2+2x-1的圖象與x軸僅有一個公共點,
解得k=-1.故選:C.【點睛】本題考查二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.5、D【分析】根據(jù)正切的定義求出AC,根據(jù)正弦的定義求出CF,計算即可.【詳解】解:在Rt△ABC中,BC=2,∠A=30°,AC==2,則EF=AC=2,∵∠E=45°,∴FC=EF?sinE=,∴AF=AC﹣FC=2﹣,故選:D.【點睛】本題考查的是特殊角的三角函數(shù)值的應(yīng)用,掌握銳角三角函數(shù)的概念、熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.6、A【解析】根據(jù)一元二次方程一次項系數(shù)的定義即可得出答案.【詳解】由一元二次方程一次項系數(shù)的定義可知一次項系數(shù)為﹣1,故選:A.【點睛】本題考查的是一元二次方程的基礎(chǔ)知識,比較簡單,需要熟練掌握.7、D【分析】由折疊的性質(zhì)可得AQ=QD,AP=PD,由勾股定理可求AQ的長,由銳角三角函數(shù)分別求出AP,HQ的長,即可求解.【詳解】解:過點D作DN⊥AC于N,∵點D是BC中點,∴BD=3,∵將△ABC折疊,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面積=△APQ的面積=××=,故選:D.【點睛】本題考查了翻折變換,勾股定理,三角形面積公式,銳角三角函數(shù),求出HQ的長是本題的關(guān)鍵.8、C【分析】根據(jù)等底等高的三角形面積比和相似三角形的相似比推出陰影部分面積.【詳解】設(shè)平行四邊形的邊AD=2a,AD邊上的高為3b;過點E作EF⊥AD交AD于F,延長FE交BC于G
∴平行四邊形的面積是6ab
∴FG=3b
∵AD∥BC
∴△AED∽△CEM
∵M是BC邊的中點,
∴,
∴EF=2b,EG=b
∴∵∴∴陰影部分面積=∴陰影部分面積:平行四邊形的面積=
故選:C.【點睛】本題主要考查了相似三角形的性質(zhì),相似三角形的對應(yīng)邊上的高線的比等于相似比.9、A【分析】根據(jù)三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.10、D【分析】當a=b時,可得出=2;當a≠b時,a、b為一元二次方程x2-6x+2=0的兩根,利用根與系數(shù)的關(guān)系可得出a+b=6,ab=2,再將其代入=中即可求出結(jié)論.【詳解】當a=b時,=1+1=2;
當a≠b時,∵a、b滿足a2-6a+2=0,b2-6b+2=0,
∴a、b為一元二次方程x2-6x+2=0的兩根,
∴a+b=6,ab=2,
∴==1.
故選:D.【點睛】此題考查根與系數(shù)的關(guān)系,分a=b及a≠b兩種情況,求出的值是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、1【分析】由旋轉(zhuǎn)的性質(zhì)可得AC=AC1=3,∠CAC1=60°,由勾股定理可求解.【詳解】∵將△ABC繞點A逆時針旋轉(zhuǎn)60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===1,故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,熟練旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.12、8【解析】設(shè)蠟燭距小孔cm,則小孔距成像板cm,由題意可知:AB∥A′B′,∴△ABO∽△A′B′O,∴,解得:(cm).即蠟燭與成像板之間的小孔相距8cm.點睛:相似三角形對應(yīng)邊上的高之比等于相似比.13、1【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出方程求解.【詳解】由題意可得,
=0.2,解得,n=1.故估計n大約有1個.故答案為1.【點睛】此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)紅球的頻率得到相應(yīng)的等量關(guān)系.14、2016【分析】首先對m這個式子進行分母有理化,然后觀察要求值的代數(shù)式進行拆分代入運算即可.【詳解】∵===,∴m+1=,∴,∴,∴原式==2016.故答案為:2016.【點睛】本題考查了二次根式的分母有理化,代數(shù)式的求值,觀察代數(shù)式的特點拆分代入是解題的關(guān)鍵.15、或【分析】由平行四邊形的性質(zhì)得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,得出AH=DH,由線段垂直平分線的性質(zhì)得出CA=CD=AB=6,由等腰三角形的性質(zhì)得出∠ACB=∠B=30°,由平行線的性質(zhì)得出∠BFG=∠ACB=30°,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,則∠ENB=∠B=30°,由直角三角形的性質(zhì)得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再證出FN=EN=3,即可得出結(jié)果;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,則∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,證出FG∥EN,則∠G=∠GEN,證出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折疊的性質(zhì)得∠BEF=∠GEF=∠BEG=45°,證出∠NEF=∠NFE,則FN=EN=3,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵點E是AB邊的中點,∴BE=3,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,連接EN,如圖1所示:則∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折疊的性質(zhì)得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,如圖2所示:則∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折疊的性質(zhì)得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折疊的性質(zhì)得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案為:或.【點睛】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;掌握翻折變換的性質(zhì)和等腰三角形的性質(zhì)是解答本題的關(guān)鍵.16、54.6【分析】過P點作PD垂直直線b于點D,構(gòu)造出兩個直角三角形,設(shè)河兩岸之間的距離約為x米,根據(jù)所設(shè)分別求出BD和AD的值,再利用AD=AB+BD得出含x的方程,解方程即可得出答案.【詳解】過P點作PD垂直直線b于點D設(shè)河兩岸之間的距離約為x米,即PD=x,則,可得:解得:x=54.6故答案為54.6【點睛】本題考查的是銳角三角函數(shù)的應(yīng)用,解題關(guān)鍵是做PD垂直直線b于點D,構(gòu)造出直角三角形.17、.【分析】取AB中點F,連接FC、FO,根據(jù)斜邊上的中線等于斜邊的一半及等腰三角形三線合一的性質(zhì)得到AB垂直平分OC,利用特殊角的三角函數(shù)即可求得答案.【詳解】如圖,設(shè)AB交OC于E,取AB中點F,連接FC、FO,∵∠MON=∠ACB=90°∴FC=FO(斜邊上的中線等于斜邊的一半),又AB平分OC,∴CE=EO,ABOC(三線合一)在中,BC=1,∠ABC=90,∴,∴∴故答案為:【點睛】本題考查了直角三角形的性質(zhì),斜邊上的中線等于斜邊的一半,等腰三角形的性質(zhì),綜合性較強,但難度不大,構(gòu)造合適的輔助線是解題的關(guān)鍵.18、(2.5,3)【分析】利用點B(3,1),B′(6,2)即可得出位似比進而得出A的坐標.【詳解】解:∵點B(3,1),B′(6,2),點A′(5,6),∴A的坐標為:(2.5,3).故答案為:(2.5,3).【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.三、解答題(共66分)19、(1)或;(2)【分析】(1)將點C、D的坐標代入拋物線表達式,即可求解;(2)當△AOC∽△AEB時,===,求出yE=,即可求出點E坐標.【詳解】解:(1)由題可列方程組:,解得:,∴拋物線解析式為:或;(2)由題,∠AOC=90°,AC=,AB=4,設(shè)直線AC的解析式為:y=kx+b,則,解得,∴直線AC的解析式為:y=-2x-2,
當△AOC∽△AEB時,===,∵S△AOC=1,∴S△AEB=,∴AB×|yE|=,AB=4,則yE=,則點E(,).【點睛】本題考查的是二次函數(shù)綜合運用,涉及到一次函數(shù)、點的對稱性、三角形相似、圖形的面積計算等.20、(1);(2);(3)【分析】(1)根據(jù)翻折性質(zhì)可得,得,.結(jié)合矩形性質(zhì)得證,根據(jù)平行線性質(zhì)得..設(shè).得,由可求出x;(2)結(jié)合(1)方法可得,,再根據(jù)勾股定理求PC,再求,中,;(3)作圖分析:當P與C重合時,PC最小,是0;當N與C重合時,PC最大=.【詳解】解:(1)沿直線翻折,點落在點處,.,.∵四邊形是矩形,.,....∵四邊形是矩形,...設(shè).∵四邊形是矩形,,,..,.解得,即.(2)沿直線翻折,點落在點處,.,.,..,,..,..在中,,...(3)如圖當P與C重合時,PC最小,是0;如圖當N與C重合時,PC最大===5;所以,此時PB=2,設(shè)PM=x,則BM=4-x由PB2+BM2=PM2可得22+(4-x)2=x2解得x=,BM=4-x=所以MN=綜合上述:,當最大時.【點睛】考核知識點:矩形性質(zhì),直角三角形性質(zhì),三角函數(shù).構(gòu)造直角三角形并解直角三角形是關(guān)鍵.21、(1)點B的坐標為(1,0).(2)①點P的坐標為(4,21)或(-4,5).②線段QD長度的最大值為.【分析】(1)由拋物線的對稱性直接得點B的坐標.(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標,得到,設(shè)出點P的坐標,根據(jù)列式求解即可求得點P的坐標.②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設(shè)點Q的坐標為(q,-q-3),從而由QD⊥x軸交拋物線于點D,得點D的坐標為(q,q2+2q-3),從而線段QD等于兩點縱坐標之差,列出函數(shù)關(guān)系式應(yīng)用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點關(guān)于對稱軸對稱,且A點的坐標為(-3,0),∴點B的坐標為(1,0).(2)①∵拋物線,對稱軸為,經(jīng)過點A(-3,0),∴,解得.∴拋物線的解析式為.∴B點的坐標為(0,-3).∴OB=1,OC=3.∴.設(shè)點P的坐標為(p,p2+2p-3),則.∵,∴,解得.當時;當時,,∴點P的坐標為(4,21)或(-4,5).②設(shè)直線AC的解析式為,將點A,C的坐標代入,得:,解得:.∴直線AC的解析式為.∵點Q在線段AC上,∴設(shè)點Q的坐標為(q,-q-3).又∵QD⊥x軸交拋物線于點D,∴點D的坐標為(q,q2+2q-3).∴.∵,∴線段QD長度的最大值為.22、[問題發(fā)現(xiàn)];[拓展提高];[解決問題]或.【分析】[問題發(fā)現(xiàn)]由,可知AD是中線,則點P是△ABC的重心,即可得到2∶3;[拓展提高]過點作交于點,則EF是△ACD的中位線,由平行線分線段成比例,得到,通過變形,即可得到答案;[解決問題]根據(jù)題意,可分為兩種情況進行討論,①點D在點C的右邊;②點D在點C的左邊;分別畫出圖形,求出BP的長度,即可得到答案.【詳解】解:[問題發(fā)現(xiàn)]:∵,∴點D是BC的中點,∴AD是△ABC的中線,∵點是的中點,則BE是△ABC的中線,∴點P是△ABC的重心,∴;故答案為:.[拓展提高]:過點作交于點.是的中點,是的中點,∴EF是△ACD的中位線,,,,∴,,即..[解決問題]:∵在中,,,∵點E是AC的中點,∴,∵CD=4,則點D可能在點C的右邊和左邊兩種可能;①當點D在點C的右邊時,如圖:過點P作PF⊥CD與點F,∵,,∴△ACD∽△PFD,∴,即,∴,∵,,∴△ECB∽△PBF,∴,∵,∴,解得:,∴,,∴;②當點D在點C的左邊時,如圖:過點P作PF⊥CD與點F,與①同理,可證△ACD∽△PFD,△ECB∽△PBF,∴,,∵,∴,解得:,∴,,∴;∴或.【點睛】本題考查了相似三角形的判定和性質(zhì),平行線分線段成比例,勾股定理,以及三角形的重心,解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì),以及勾股定理解三角形.注意運用分類討論的思想進行解題.23、(1);(1);(3)當時,隨增大而增大;當時,隨增大而減?。痉治觥浚?)設(shè)二次函數(shù)解析式為y=a(x﹣1)(x﹣1),然后把點(3,4)代入函數(shù)解析式求得a的值即可;(1)將(1)中拋物線的解析式利用配方法轉(zhuǎn)化為頂點式,可以直接寫出頂點坐標;(3)根據(jù)拋物線的開口方向和對稱軸寫出答案.【詳解】(1)∵二次函數(shù)y=ax1+bx+c的圖象與x軸交于點(1,0)和(1,0),∴設(shè)該二次函數(shù)解析式為y=a(x﹣1)(x﹣1)(a≠0),把點(3,4)代入,得:a×(3﹣1)×(3﹣1)=4,解得:a=1.則該拋物線的解析式為:y=1(x﹣1)(x﹣1);(1)由(1)知,拋物線的解析式為y=1(x﹣1)(x﹣1).∵y=1(x﹣1)(x﹣1)=1(x)1,∴該拋物線的頂點坐標是:(,).(3)由拋物線的解析式y(tǒng)=1(x)1知,拋物線開口方向向上,對稱軸是x.結(jié)合二次函數(shù)y=ax1+bx+c的圖象與x軸交于點(1,0)和(1,0),作出該拋物線的大致圖象.如圖所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度服裝設(shè)計委托創(chuàng)作合同
- 感恩課程課件教學課件
- 2024年度互聯(lián)網(wǎng)金融與投資合同
- 2024年城市供水供電管網(wǎng)改造工程合同
- 2024年度電子商務(wù)平臺服務(wù)外包合同
- 2024年度智能家居產(chǎn)品購銷合同
- 2024年屋產(chǎn)交易合同:個人賣家與買家之間的協(xié)議
- 2024年度光伏發(fā)電項目建設(shè)與運營合同
- 大學民法課件教學課件
- 公司中秋節(jié)員工的慰問信(18篇)
- 高考數(shù)學小題狂練:每題都附有詳細解析
- 浮動碼頭施工方案
- Poka-Yoke防錯技術(shù)(完整版)
- 保安交接班記錄表(2)
- 神明—EZflame火焰檢測系統(tǒng)
- 個人簡歷求職簡歷課件.ppt
- 2018年江蘇高考滿分作文:在母語的屋檐下
- 新青島版五四制2021-2022四年級科學上冊實驗指導
- 小學四年級音樂課程標準
- 雙向細目表和單元測試卷及組卷說明
- 離子色譜法測定空氣中二氧化硫
評論
0/150
提交評論