版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年廣東省佛山市禪城區(qū)數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).其中正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個2.獲2019年度諾貝爾化學(xué)獎的“鋰電池”創(chuàng)造了一個更清潔的世界.我國新能源發(fā)展迅猛,某種特型鋰電池2016年銷售量為8萬個,到2018年銷售量為97萬個.設(shè)年均增長率為x,可列方程為()A.8(1+x)2=97 B.97(1﹣x)2=8 C.8(1+2x)=97 D.8(1+x2)=973.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4.如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.5.學(xué)校要舉行“讀書月”活動,同學(xué)們設(shè)計了如下四種“讀書月”活動標志圖案,其中是中心對稱圖形的是()A. B. C. D.6.如圖,在平面直角坐標系中,直線AB與x軸,y軸分別交于A,B,與反比例函數(shù)(k>0)在第一象限的圖象交于點E,F(xiàn),過點E作EM⊥y軸于M,過點F作FN⊥x軸于N,直線EM與FN交于點C,若,則△OEF與△CEF的面積之比是()A.2:1 B.3:1 C.2:3 D.3:27.已知袋中有若干個球,其中只有2個紅球,它們除顏色外其它都相同.若隨機從中摸出一個,摸到紅球的概率是,則袋中球的總個數(shù)是()A.2 B.4 C.6 D.88.要得到函數(shù)y=2(x-1)2+3的圖像,可以將函數(shù)y=2x2的圖像()A.向左平移1個單位長度,再向上平移3個單位長度B.向左平移1個單位長度,再向下平移3個單位長度C.向右平移1個單位長度,再向上平移3個單位長度D.向右平移1個單位長度,再向下平移3個單位長度9.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是().A. B.C. D.10.下列說法中,不正確的是()A.圓既是軸對稱圖形又是中心對稱圖形 B.圓有無數(shù)條對稱軸C.圓的每一條直徑都是它的對稱軸 D.圓的對稱中心是它的圓心11.國家實施“精準扶貧”政策以來,很多貧困人口走向了致富的道路.某地區(qū)2017年底有貧困人口25萬人,通過社會各界的努力,2019年底貧困人口減少至9萬人.設(shè)2017年底至2019年底該地區(qū)貧困人口的年平均下降率為x,根據(jù)題意可列方程()A.25(1﹣2x)=9 B.C.9(1+2x)=25 D.12.?dāng)?shù)學(xué)興趣小組的同學(xué)們想利用樹影測量樹高.課外活動時他們在陽光下測得一根長為1米的竹竿的影子是0.9米,同一時刻測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的臺階上,且影子的末端剛好落在最后一級臺階的上端C處,他們測得落在地面的影長為1.1米,臺階總的高度為1.0米,臺階水平總寬度為1.6米.則樹高為()A.3.0m B.4.0m C.5.0m D.6.0m二、填空題(每題4分,共24分)13.在一個不透明的布袋中裝有黃、白兩種顏色的球共40個,除顏色外其他都相同,小王通過多次摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在0.35左右,則布袋中黃球可能有_________個14.如圖,,如果,那么_________________.15.設(shè)、是一元二次方程的兩實數(shù)根,則的值為_________16.正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如圖所示的方式放置,點A1、A2、A3和點C1、C2、C3、C4分別在拋物線y=x2和y軸上,若點C1(0,1),則正方形A3B3C4C3的面積是________.17.小明同學(xué)身高1.5米,經(jīng)太陽光照射,在地面的影長為2米,他此時測得旗桿在同一地面的影長為12米,那么旗桿高為_________米.18.計算:﹣(﹣π)0+()﹣1=_____.三、解答題(共78分)19.(8分)如圖,拋物線y=ax2+bx+4(a≠0)與軸交于點B(-3,0)和C(4,0)與軸交于點A.(1)a=,b=;(2)點M從點A出發(fā)以每秒1個單位長度的速度沿AB向B運動,同時,點N從點B出發(fā)以每秒1個單位長度的速度沿BC向C運動,當(dāng)點M到達B點時,兩點停止運動.t為何值時,以B、M、N為頂點的三角形是等腰三角形?(3)點P是第一象限拋物線上的一點,若BP恰好平分∠ABC,請直接寫出此時點P的坐標.20.(8分)如圖①,是平行四邊形的邊上的一點,且,交于點.(1)若,求的長;(2)如圖②,若延長和交于點,,能否求出的長?若能,求出的長;若不能,說明理由.21.(8分)某商品的進價為每件40元,現(xiàn)在的售價為每件60元,每星期可賣出300件.市場調(diào)查反映:每漲價1元,每星期要少賣出10件.(1)每件商品漲價多少元時,每星期該商品的利潤是4000元?(2)每件商品的售價為多少元時,才能使每星期該商品的利潤最大?最大利潤是多少元?22.(10分)如圖,已知反比例函數(shù)y=的圖象經(jīng)過點A(4,m),AB⊥x軸,且△AOB的面積為2.(1)求k和m的值;(2)若點C(x,y)也在反比例函數(shù)y=的圖象上,當(dāng)-3≤x≤-1時,求函數(shù)值y的取值范圍.23.(10分)為提升學(xué)生的藝術(shù)素養(yǎng),某校計劃開設(shè)四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學(xué)生必須選修且只能選修一門課程,為保證計劃的有效實施,學(xué)校隨機對部分學(xué)生進行了一次調(diào)查,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.學(xué)生選修課程統(tǒng)計表課程人數(shù)所占百分比聲樂14舞蹈8書法16攝影合計根據(jù)以上信息,解答下列問題:(1),.(2)求出的值并補全條形統(tǒng)計圖.(3)該校有1500名學(xué)生,請你估計選修“聲樂”課程的學(xué)生有多少名.(4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎(chǔ),學(xué)校準備從這4人中隨機抽取2人編排“舞蹈”在開班儀式上表演,請用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個班級的概率.24.(10分)如圖,賓館大廳的天花板上掛有一盞吊燈AB,某人從C點測得吊燈頂端A的仰角為,吊燈底端B的仰角為,從C點沿水平方向前進6米到達點D,測得吊燈底端B的仰角為.請根據(jù)以上數(shù)據(jù)求出吊燈AB的長度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)25.(12分)某商場購進一種單價為10元的商品,根據(jù)市場調(diào)查發(fā)現(xiàn):如果以單價20元售出,那么每天可賣出30個,每降價1元,每天可多賣出5個,若每個降價x(元),每天銷售y(個),每天獲得利潤W(元).(1)寫出y與x的函數(shù)關(guān)系式;(2)求W與x的函數(shù)關(guān)系式(不必寫出x的取值范圍)(3)若降價x元(x不低于4元)時,銷售這種商品每天獲得的利潤最大為多少元?26.解方程:x2﹣2x﹣2=1.
參考答案一、選擇題(每題4分,共48分)1、A【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側(cè)得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;當(dāng)x=﹣1時圖象在x軸上得到y(tǒng)=a﹣b+c=0,即a+c=b;對稱軸為直線x=1,可得x=2時圖象在x軸上方,則y=4a+2b+c>0;利用對稱軸x=﹣=1得到a=﹣b,而a﹣b+c<0,則﹣b﹣b+c<0,所以2c<3b;開口向下,當(dāng)x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【詳解】解:開口向下,a<0;對稱軸在y軸的右側(cè),a、b異號,則b>0;拋物線與y軸的交點在x軸的上方,c>0,則abc<0,所以①不正確;當(dāng)x=﹣1時圖象在x軸上,則y=a﹣b+c=0,即a+c=b,所以②不正確;對稱軸為直線x=1,則x=2時圖象在x軸上方,則y=4a+2b+c>0,所以③正確;x=﹣=1,則a=﹣b,而a﹣b+c=0,則﹣b﹣b+c=0,2c=3b,所以④不正確;開口向下,當(dāng)x=1,y有最大值a+b+c;當(dāng)x=m(m≠1)時,y=am2+bm+c,則a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正確.故選:A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax2+bx+c(a≠0)的圖象,當(dāng)a>0,開口向上,函數(shù)有最小值,a<0,開口向下,函數(shù)有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側(cè),a與b異號,對稱軸在y軸的右側(cè);當(dāng)c>0,拋物線與y軸的交點在x軸的上方;當(dāng)△=b2-4ac>0,拋物線與x軸有兩個交點.2、A【分析】2018年年銷量=2016年年銷量×(1+年平均增長率)2,把相關(guān)數(shù)值代入即可.【詳解】解:設(shè)年均增長率為x,可列方程為:8(1+x)2=1.故選:A.【點睛】此題主要考查了根據(jù)實際問題列一元二次方程;得到2018年收入的等量關(guān)系是解決本題的關(guān)鍵.3、C【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義進行判斷即可.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;故選C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,屬于基礎(chǔ)題型,熟知軸對稱圖形和中心對稱圖形的定義是正確判斷的關(guān)鍵.4、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.5、C【分析】根據(jù)中心對稱圖形的概念作答.在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉(zhuǎn)點,就叫做中心對稱點.【詳解】解:、不是中心對稱圖形,因為找不到任何這樣的一點,使它繞這一點旋轉(zhuǎn)180°以后,能夠與它本身重合,即不滿足中心對稱圖形的定義.不符合題意;、不是中心對稱圖形,因為找不到任何這樣的一點,使它繞這一點旋轉(zhuǎn)180°以后,能夠與它本身重合,即不滿足中心對稱圖形的定義.不符合題意;、圖形中心繞旋轉(zhuǎn)180°以后,能夠與它本身重合,故是中心對稱圖形,符合題意;、不是中心對稱圖形,因為找不到任何這樣的一點,使它繞這一點旋轉(zhuǎn)180°以后,能夠與它本身重合,即不滿足中心對稱圖形的定義.不符合題意.故選:.【點睛】本題考查了中心對稱圖形的概念.特別注意,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后兩部分重合.6、A【分析】根據(jù)E,F(xiàn)都在反比例函數(shù)的圖象上設(shè)出E,F(xiàn)的坐標,進而分別得出△CEF的面積以及△OEF的面積,然后即可得出答案.【詳解】解:設(shè)△CEF的面積為S1,△OEF的面積為S2,過點F作FG⊥BO于點G,EH⊥AO于點H,∴GF∥MC,∴=,∵ME?EH=FN?GF,∴==,設(shè)E點坐標為:(x,),則F點坐標為:(3x,),∴S△CEF=(3x﹣x)(﹣)=,∵S△OEF=S梯形EHNF+S△EOH﹣S△FON=S梯形EHNF=(+)(3x﹣x)=k∴==.故選:A.【點睛】此題主要考查了反比例函數(shù)的綜合應(yīng)用以及三角形面積求法,根據(jù)已知表示出E,F(xiàn)的點坐標是解題關(guān)鍵,有一定難度,要求同學(xué)們能將所學(xué)的知識融會貫通.7、D【解析】試題解析:袋中球的總個數(shù)是:2÷=8(個).故選D.8、C【解析】找到兩個拋物線的頂點,根據(jù)拋物線的頂點即可判斷是如何平移得到.【詳解】解:∵y=2(x-1)2+3的頂點坐標為(1,3),y=2x2的頂點坐標為(0,0),∴將拋物線y=2x2向右平移1個單位,再向上平移3個單位,可得到拋物線y=2(x-1)2+3故選:C.【點睛】本題考查了二次函數(shù)圖象與幾何變換,解答時注意抓住點的平移規(guī)律和求出關(guān)鍵點頂點坐標.9、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的定義進行判斷.【詳解】A、既是中心對稱圖形,又是軸對稱圖形,不符合題意;B、是中心對稱圖形但不是軸對稱圖形,符合題意;C、不是中心對稱圖形,但是軸對稱圖形,不符合題意;D、不是中心對稱圖形,但是軸對稱圖形,不符合題意;故選B.【點睛】本題考查中心對稱圖形與軸對稱圖形的識別,熟練掌握中心對稱圖形與軸對稱圖形的定義是解題的關(guān)鍵.10、C【分析】圓有無數(shù)條對稱軸,但圓的對稱軸是直線,故C圓的每一條直線都是它的對稱軸的說法是錯誤的【詳解】本題不正確的選C,理由:圓有無數(shù)條對稱軸,其對稱軸都是直線,故任何一條直徑都是它的對稱軸的說法是錯誤的,正確的說法應(yīng)該是圓有無數(shù)條對稱軸,任何一條直徑所在的直線都是它的對稱軸故選C【點睛】此題主要考察對稱軸圖形和中心對稱圖形,難度不大11、B【分析】根據(jù)2017年貧困人口數(shù)×(1-平均下降率為)2=2019年貧困人口數(shù)列方程即可.【詳解】設(shè)年平均下降率為x,∵2017年底有貧困人口25萬人,2019年底貧困人口減少至9萬人,∴25(1-x)2=9,故選:B.【點睛】本題考查由實際問題抽象出一元二次方程,即一元二次方程解答有關(guān)平均增長率問題.對于平均增長率問題,在理解的基礎(chǔ)上,可歸結(jié)為a(1+x)2=b(a<b);平均降低率問題,在理解的基礎(chǔ)上,可歸結(jié)為a(1-x)2=b(a>b).12、B【分析】根據(jù)同一時刻物高與影長成正比例列式計算即可.【詳解】根據(jù)同一時刻物高與影長成正比例可得,如圖,∴=.∴AD=1.∴AB=AD+DB=1+1=2.故選:B.【點睛】本題考查了相似三角形的應(yīng)用,只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,加上DB的長即可.解此題的關(guān)鍵是找到各部分以及與其對應(yīng)的影長.二、填空題(每題4分,共24分)13、14【分析】先由頻率估計出摸到黃球的概率,然后利用概率公式求解即可.【詳解】因摸到黃球的頻率穩(wěn)定在0.35左右則摸到黃球的概率為0.35設(shè)布袋中黃球的個數(shù)為x個由概率公式得解得故答案為:14.【點睛】本題考查了頻率估計概率、概率公式,根據(jù)頻率估計出事件概率是解題關(guān)鍵.14、【分析】根據(jù)平行線分線段成比例定理解答即可.【詳解】解:∵,∴,即,解得:.故答案為:.【點睛】本題考查的是平行線分線段成比例定理,屬于基本題型,熟練掌握該定理是解題關(guān)鍵.15、27【詳解】解:根據(jù)一元二次方程根與系數(shù)的關(guān)系,可知+=5,·=-1,因此可知=-2=25+2=27.故答案為27.【點睛】此題主要考查了一元二次方程根與系數(shù)的關(guān)系,解題時靈活運用根與系數(shù)的關(guān)系:,,確定系數(shù)a,b,c的值代入求解,然后再通過完全平方式變形解答即可.16、2+.【分析】先根據(jù)點C1(0,1)求出A1的坐標,故可得出B1、A2、C2的坐標,由此可得出A2C2的長,可得出B2、C3、A3的坐標,同理即可得出A3C3的長,進而得出結(jié)論.【詳解】∵點(0,1),四邊形,,均是正方形,點、、和點、、、分別在拋物線和y軸上,∴(1,1),(0,2),∴(,2),∴(0,2+),∵點的縱坐標與點相同,點在二次函數(shù)的圖象上,∴(,),即,∴.故答案為:2+.【點睛】本題考查的是二次函數(shù)與幾何的綜合題,熟知正方形的性質(zhì)及二次函數(shù)圖象上點的坐標特點是解答此題的關(guān)鍵.17、9【解析】設(shè)旗桿高為x米,根據(jù)同時同地物高與影長成正比列出比例式,求解即可.【詳解】設(shè)旗桿高為x米,根據(jù)題意得,解得:x=9,故答案為:9【點睛】本題主要考查同一時刻物高和影長成正比.考查利用所學(xué)知識解決實際問題的能力.18、1【分析】首先計算乘方、開方,然后從左向右依次計算,求出算式的值是多少即可.【詳解】解:﹣(﹣π)0+()﹣1=2﹣1+2=1.故答案為:1.【點睛】此題考查的是實數(shù)的混合運算,掌握立方根的定義、零指數(shù)冪的性質(zhì)和負指數(shù)冪的性質(zhì)是解決此題的關(guān)鍵.三、解答題(共78分)19、(1),;(2);(3)【解析】(1)直接利用待定系數(shù)法求二次函數(shù)解析式得出即可;(2)分三種情況:①當(dāng)BM=BN時,即5-t=t,②當(dāng)BM=NM=5-t時,過點M作ME⊥OB,因為AO⊥BO,所以ME∥AO,可得:即可解答;③當(dāng)BE=MN=t時,過點E作EF⊥BM于點F,所以BF=BM=(5-t),易證△BFE∽△BOA,所以即可解答;(3)設(shè)BP交y軸于點G,過點G作GH⊥AB于點H,因為BP恰好平分∠ABC,所以O(shè)G=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,設(shè)出點P坐標,易證△BGO∽△BPD,所以,即可解答.【詳解】解:解:(1)∵拋物線過點B(-3,0)和C(4,0),
∴,
解得:;(2)∵B(-3,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒時,AM=t,BN=t,BM=AB-AM=5-t,①如圖:當(dāng)BM=BN時,即5-t=t,解得:t=;,②如圖,當(dāng)BM=NM=5-t時,過點M作ME⊥OB,因為BN=t,由三線合一得:BE=BN=t,又因為AO⊥BO,所以ME∥AO,所以,即,解得:t=;③如圖:當(dāng)BE=MN=t時,過點E作EF⊥BM于點F,所以BF=BM=(5-t),易證△BFE∽△BOA,所以,即,解得:t=.(3)設(shè)BP交y軸于點G,過點G作GH⊥AB于點H,因為BP恰好平分∠ABC,所以O(shè)G=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,設(shè)P(m,-m2+m+4),因為GO∥PD,∴△BGO∽△BPD,∴,即,解得:m1=,m2=-3(點P在第一象限,所以不符合題意,舍去),m1=時,-m2+m+4=故點P的坐標為【點睛】本題考查用待定系數(shù)法求二次函數(shù)解析式,還考查了等腰三角形的判定與性質(zhì)、相似三角形的性質(zhì)和判定.20、(1);(2)能,【分析】(1)由DE∥BC,可得,由此即可解決問題;
(2)由PB∥DC,可得,可得PA的長.【詳解】(1)∵為平行四邊形∴,,又∵∴又∵∴,∴.(2)能∵為平行四邊形,∴,,∴∴∴【點睛】本題考查了相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.21、(1)20;(2)65,1.【分析】(1)每件漲價x元,則每件的利潤是(60-40+x)元,所售件數(shù)是(300-10x)件,根據(jù)利潤=每件的利潤×所售的件數(shù)列方程,即可得到結(jié)論;
(2)設(shè)每件商品漲價m元,每星期該商品的利潤為W,根據(jù)題意先列出函數(shù)解析式,再由函數(shù)的性質(zhì)即可求得如何定價才能使利潤最大.【詳解】解:(1)設(shè)每件商品漲價x元,
根據(jù)題意得,(60-40+x)(300-10x)=4000,
解得:x1=20,x2=-10,(不合題意,舍去),
答:每件商品漲價20元時,每星期該商品的利潤是4000元;
(2)設(shè)每件商品漲價m元,每星期該商品的利潤為W,
∴W=(60-40+m)(300-10m)=-10m2+100m+6000=-10(m-5)2+1
∴當(dāng)m=5時,W最大值.
∴60+5=65(元),
答:每件定價為65元時利潤最大,最大利潤為1元.【點睛】本題主要考查了二次函數(shù)的應(yīng)用,最值問題一般的解決方法是轉(zhuǎn)化為函數(shù)問題,根據(jù)函數(shù)的性質(zhì)求解.22、(1)k=4,m=1;(2)當(dāng)-3≤x≤-1時,y的取值范圍為-4≤y≤-.【詳解】試題分析:(1)根據(jù)反比例函數(shù)系數(shù)k的幾何意義先得到k的值,然后把點A的坐標代入反比例函數(shù)解析式,可求出k的值;(2)先分別求出x=﹣3和﹣1時y的值,再根據(jù)反比例函數(shù)的性質(zhì)求解.試題解析:(1)∵△AOB的面積為2,∴k=4,∴反比例函數(shù)解析式為,∵A(4,m),∴m==1;(2)∵當(dāng)x=﹣3時,y=﹣;當(dāng)x=﹣1時,y=﹣4,又∵反比例函數(shù)在x<0時,y隨x的增大而減小,∴當(dāng)﹣3≤x≤﹣1時,y的取值范圍為﹣4≤y≤﹣.考點:反比例函數(shù)系數(shù)k的幾何意義;反比例函數(shù)圖象上點的坐標特征.23、(1)50、28;(2),補全圖形見解析;(3)估計選修“聲樂”課程的學(xué)生有420人;(4)所抽取的2人恰好來自同一個班級的概率為.【分析】(1)由舞蹈人數(shù)及其所占百分比可得的值,聲樂人數(shù)除以總?cè)藬?shù)即可求出的值;(2)總?cè)藬?shù)乘以攝影對應(yīng)百分比求出其人數(shù),從而補全圖形;(3)利用樣本估計總體思想求解可得;(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽取的2名學(xué)生恰好來自同一個班級的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1),,即,故答案為50、28;(2),補全圖形如下:(3)估計選修“聲樂”課程的學(xué)生有(人.(4)七(1)班的學(xué)生記作1,七(2)班的學(xué)生記作2,畫樹狀圖為:∴共有12種等可能的結(jié)果數(shù),其中抽取的2名學(xué)生恰好來自同一個班級的結(jié)果數(shù)為4,則所抽取的2人恰好來自同一個班級的概率為.【點睛】本題考查了統(tǒng)計表、條形統(tǒng)計圖、樣本估計總體、列表法與樹狀圖法求概率:利用列表法或樹狀圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共空間裝飾設(shè)計的裝飾施工問題預(yù)防考核試卷
- 農(nóng)產(chǎn)品初加工中的廢棄物處理技術(shù)考核試卷
- 娛樂用品跨境電商運營策略考核試卷
- 2025年度軟件開發(fā)合同:金融行業(yè)定制化系統(tǒng)開發(fā)與維護3篇
- 經(jīng)濟政策不確定性、債權(quán)融資與企業(yè)創(chuàng)新
- 業(yè)財融合視角下企業(yè)財務(wù)轉(zhuǎn)型研究
- 專項房地產(chǎn)委托建設(shè)協(xié)議范本(2024版)版
- 建筑類型學(xué)視角下濟南黃河非遺文化主題公園規(guī)劃設(shè)計研究
- “雙碳”目標下寶鋼股份財務(wù)風(fēng)險管理研究
- 鈣摻雜鈷鐵氧體的磁性能調(diào)控與結(jié)構(gòu)解析
- GB/T 24474.1-2020乘運質(zhì)量測量第1部分:電梯
- GB/T 12684-2006工業(yè)硼化物分析方法
- 定崗定編定員實施方案(一)
- 高血壓患者用藥的注意事項講義課件
- 特種作業(yè)安全監(jiān)護人員培訓(xùn)課件
- (完整)第15章-合成生物學(xué)ppt
- 太平洋戰(zhàn)爭課件
- 封條模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖漿
- 貨代操作流程及規(guī)范
- 常暗之廂(7規(guī)則-簡體修正)
評論
0/150
提交評論