湖北省天門、仙桃、潛江三市2024屆高三第二次精英對抗賽數(shù)學試題_第1頁
湖北省天門、仙桃、潛江三市2024屆高三第二次精英對抗賽數(shù)學試題_第2頁
湖北省天門、仙桃、潛江三市2024屆高三第二次精英對抗賽數(shù)學試題_第3頁
湖北省天門、仙桃、潛江三市2024屆高三第二次精英對抗賽數(shù)學試題_第4頁
湖北省天門、仙桃、潛江三市2024屆高三第二次精英對抗賽數(shù)學試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省天門、仙桃、潛江三市2024屆高三第二次精英對抗賽數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在復平面內,復數(shù)對應的點的坐標為()A. B. C. D.2.設f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調遞減,則()A. B.C. D.3.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.4.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.5.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數(shù)學成績不低于110分的學生人數(shù)約為()A.40 B.60 C.80 D.1006.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.7.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或08.閱讀如圖所示的程序框圖,運行相應的程序,則輸出的結果為()A. B.6 C. D.9.已知全集,則集合的子集個數(shù)為()A. B. C. D.10.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.11.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.12.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,項的系數(shù)是__________.14.若、滿足約束條件,則的最小值為______.15.已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則=__________.16.若,i為虛數(shù)單位,則正實數(shù)的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù),(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.18.(12分)已知橢圓C的中心在坐標原點,其短半軸長為1,一個焦點坐標為,點在橢圓上,點在直線上,且.(1)證明:直線與圓相切;(2)設與橢圓的另一個交點為,當?shù)拿娣e最小時,求的長.19.(12分)已知直線l的極坐標方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.20.(12分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調査,統(tǒng)計了他們一周課外讀書時間(單位:)的數(shù)據(jù)如下:一周課外讀書時間/合計頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時間的中位數(shù).(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應抽取的人數(shù);②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.21.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.22.(10分)在直角坐標平面中,已知的頂點,,為平面內的動點,且.(1)求動點的軌跡的方程;(2)設過點且不垂直于軸的直線與交于,兩點,點關于軸的對稱點為,證明:直線過軸上的定點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

利用復數(shù)的運算法則、幾何意義即可得出.【題目詳解】解:復數(shù)i(2+i)=2i﹣1對應的點的坐標為(﹣1,2),故選:C【題目點撥】本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.2、D【解題分析】

利用是偶函數(shù)化簡,結合在區(qū)間上的單調性,比較出三者的大小關系.【題目詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【題目點撥】本小題主要考查利用函數(shù)的奇偶性和單調性比較大小,屬于基礎題.3、A【解題分析】

由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據(jù)點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【題目詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【題目點撥】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.4、D【解題分析】

由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構造方程求得結果.【題目詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【題目點撥】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.5、D【解題分析】

由正態(tài)分布的性質,根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結果.【題目詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學成績不低于110分的人數(shù)為人,故選:.【題目點撥】本題考查正態(tài)分布的圖象和性質,考查學生分析問題的能力,難度容易.6、B【解題分析】

選B.考點:圓心坐標7、C【解題分析】

求出函數(shù)的導函數(shù),當時,只需,即,令,利用導數(shù)求其單調區(qū)間,即可求出參數(shù)的值,當時,根據(jù)函數(shù)的單調性及零點存在性定理可判斷;【題目詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調遞增.∵,∴;當時,,函數(shù)在上單調遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【題目點撥】本題考查利用導數(shù)研究函數(shù)的零點問題,零點存在性定理的應用,屬于中檔題.8、D【解題分析】

用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【題目詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應該不滿足條件,退出循環(huán),輸出S的值為.故選D.【題目點撥】本題主要考查了循環(huán)結構的程序框圖的應用,正確依次寫出每次循環(huán)得到的與的值是解題的關鍵,難度較易.9、C【解題分析】

先求B.再求,求得則子集個數(shù)可求【題目詳解】由題=,則集合,故其子集個數(shù)為故選C【題目點撥】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關鍵,是基礎題10、D【解題分析】

根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【題目詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【題目點撥】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.11、A【解題分析】

由題先畫出基本圖形,結合向量加法和點乘運算化簡可得,結合的范圍即可求解【題目詳解】如圖,其中,所以.故選:A【題目點撥】本題考查向量的線性運算在幾何中的應用,數(shù)形結合思想,屬于中檔題12、D【解題分析】

設,,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【題目詳解】解:設,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【題目點撥】本題考查雙曲線的方程和性質,考查了斜率的計算,離心率的求法,屬于基礎題和易錯題.二、填空題:本題共4小題,每小題5分,共20分。13、240【解題分析】

利用二項式展開式的通項公式,令x的指數(shù)等于3,計算展開式中含有項的系數(shù)即可.【題目詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【題目點撥】本題主要考查二項式展開式的通項公式及簡單應用,相對不難.14、【解題分析】

作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應的最優(yōu)解,代入目標函數(shù)計算即可.【題目詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【題目點撥】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結合思想的應用,屬于基礎題.15、【解題分析】

根據(jù)等差中項性質,結合等比數(shù)列通項公式即可求得公比;代入表達式,結合對數(shù)式的化簡即可求解.【題目詳解】等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項公式可知,所以,解得或(舍),所以由對數(shù)式運算性質可得,故答案為:.【題目點撥】本題考查了等差數(shù)列通項公式的簡單應用,等比數(shù)列通項公式的用法,對數(shù)式的化簡運算,屬于中檔題.16、【解題分析】

利用復數(shù)模的運算性質,即可得答案.【題目詳解】由已知可得:,,解得.故答案為:.【題目點撥】本題考查復數(shù)模的運算性質,考查推理能力與計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)證明見解析【解題分析】

(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【題目詳解】(1)當時,,所以或或解得或,因此不等式的解集的或(2)根據(jù),當且僅當時,等式成立.【題目點撥】本題考查絕對值不等式的解法、利用基本不等式證明不等式問題,考查學生基本的計算能力,是一道基礎題.18、(1)見解析;(2).【解題分析】

(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設的方程為,可求解得到,,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【題目詳解】(1)由題意,橢圓的焦點在x軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當?shù)男甭蕿?時,,,于是,到的距離為1,直線與圓相切.當?shù)男甭什粸?時,設的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為1,直線與圓相切.綜上,直線與圓相切.(2)由(1)知,的面積為,上式中,當且僅當?shù)忍柍闪?,所以面積的最小值為1.此時,點在橢圓的長軸端點,為.不妨設為長軸左端點,則直線的方程為,代入橢圓的方程解得,即,,所以.【題目點撥】本題考查了直線和橢圓綜合,考查了直線和圓的位置關系判斷,面積的最值問題,考查了學生綜合分析,數(shù)學運算能力,屬于較難題.19、(1).x2+y2=1.(2)16【解題分析】

(1)直接利用極坐標方程和參數(shù)方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【題目詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【題目點撥】本題考查了極坐標方程和參數(shù)方程,圓的弦長,意在考查學生的計算能力和轉化能力.20、(1),,,中位數(shù);(2)①三層中抽取的人數(shù)分別為2,5,13;②【解題分析】

(1)根據(jù)頻率分布直方表的性質,即可求得,得到,,再結合中位數(shù)的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據(jù)抽樣比,求得在三層中抽取的人數(shù);②由①知,設內被抽取的學生分別為,內被抽取的學生分別為,利用列舉法得到基本事件的總數(shù),利用古典概型的概率計算公式,即可求解.【題目詳解】(1)由題意,可得,所以,.設一周課外讀書時間的中位數(shù)為小時,則,解得,即一周課外讀書時間的中位數(shù)約為小時.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,,的頻數(shù)分別為20,50,130,所以從,,三層中抽取的人數(shù)分別為2,5,13.②由①知,在,兩層中共抽取7人,設內被抽取的學生分別為,內被抽取的學生分別為,若從這7人中隨機抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設事件為“這2人不在同一層”,由古典概型的概率計算公式,可得概率為.【題目點撥】本題主要考查了頻率分布直方表的性質,中位數(shù)的求解,以及古典概型的概率計算等知識的綜合應用,著重考查了分析問題和解答問題的能力,屬于基礎題.21、(1)見證明;(2)【解題分析】

(1)設是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標原點,的方向為軸的正方向,建空間直角坐標系,分別計算各個點坐標,計算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【題目詳解】(1)證明:設是的中點,連接、,是的中點,,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點作,垂足為,平面,以為坐標原點,的方向為軸的正方向,建立如圖的空間直角坐標系,則,,,,設是平面的一個法向量,則,,令,則,,,直線與平面所成角的正弦值為.【題目點撥】本題考查了線面垂直,線線垂直,利用空間直角坐標系解決線面夾角問題,意在考查學生的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論