![2024屆湖北省小池濱江高級中學(xué)高三下第一次摸底考試數(shù)學(xué)試題_第1頁](http://file4.renrendoc.com/view11/M02/25/38/wKhkGWWS5ouACTdcAAIbLu5Qses544.jpg)
![2024屆湖北省小池濱江高級中學(xué)高三下第一次摸底考試數(shù)學(xué)試題_第2頁](http://file4.renrendoc.com/view11/M02/25/38/wKhkGWWS5ouACTdcAAIbLu5Qses5442.jpg)
![2024屆湖北省小池濱江高級中學(xué)高三下第一次摸底考試數(shù)學(xué)試題_第3頁](http://file4.renrendoc.com/view11/M02/25/38/wKhkGWWS5ouACTdcAAIbLu5Qses5443.jpg)
![2024屆湖北省小池濱江高級中學(xué)高三下第一次摸底考試數(shù)學(xué)試題_第4頁](http://file4.renrendoc.com/view11/M02/25/38/wKhkGWWS5ouACTdcAAIbLu5Qses5444.jpg)
![2024屆湖北省小池濱江高級中學(xué)高三下第一次摸底考試數(shù)學(xué)試題_第5頁](http://file4.renrendoc.com/view11/M02/25/38/wKhkGWWS5ouACTdcAAIbLu5Qses5445.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖北省小池濱江高級中學(xué)高三下第一次摸底考試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.2.集合,則()A. B. C. D.3.已知函數(shù),則的最小值為()A. B. C. D.4.復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q6.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)7.設(shè)是定義域為的偶函數(shù),且在單調(diào)遞增,,則()A. B.C. D.8.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準(zhǔn)線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③9.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.10.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.11.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準(zhǔn)線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.12.已知滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為.14.設(shè)為定義在上的偶函數(shù),當(dāng)時,(為常數(shù)),若,則實數(shù)的值為______.15.已知集合,.若,則實數(shù)a的值是______.16.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機(jī)選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程及直線的直角坐標(biāo)方程;(2)求曲線上的點到直線的距離的最大值與最小值.19.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學(xué)、外語為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對物理學(xué)科的喜好程度,某高中從高一年級學(xué)生中隨機(jī)抽取人做調(diào)查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;(2)為了了解學(xué)生對選科的認(rèn)識,年級決定召開學(xué)生座談會.現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.20.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.21.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.22.(10分)已知是各項都為正數(shù)的數(shù)列,其前項和為,且為與的等差中項.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運(yùn)算律計算可得;【題目詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【題目點撥】本題考查平面向量的數(shù)量積及其運(yùn)算律的應(yīng)用,屬于基礎(chǔ)題.2、D【解題分析】
利用交集的定義直接計算即可.【題目詳解】,故,故選:D.【題目點撥】本題考查集合的交運(yùn)算,注意常見集合的符號表示,本題屬于基礎(chǔ)題.3、C【解題分析】
利用三角恒等變換化簡三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【題目詳解】由于,故其最小值為:.故選:C.【題目點撥】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.4、A【解題分析】
試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點:1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點與復(fù)數(shù)的關(guān)系5、B【解題分析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復(fù)合命題的真假的判定有機(jī)地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運(yùn)用、幾何概型的特征與計算公式的運(yùn)用等知識與方法的綜合運(yùn)用,以及分析問題解決問題的能力。6、C【解題分析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項.【題目詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【題目點撥】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.7、C【解題分析】
根據(jù)偶函數(shù)的性質(zhì),比較即可.【題目詳解】解:顯然,所以是定義域為的偶函數(shù),且在單調(diào)遞增,所以故選:C【題目點撥】本題考查對數(shù)的運(yùn)算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.8、B【解題分析】
由題意,可設(shè)直線的方程為,利用韋達(dá)定理判斷第一個結(jié)論;將代入拋物線的方程可得,,從而,,進(jìn)而判斷第二個結(jié)論;設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點到準(zhǔn)線的距離為,顯然,,三點不共線,進(jìn)而判斷第三個結(jié)論.【題目詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點,的坐標(biāo)分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點關(guān)于軸對稱,所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點到準(zhǔn)線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【題目點撥】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.9、C【解題分析】
設(shè)為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結(jié)論.【題目詳解】設(shè)分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【題目點撥】本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.10、D【解題分析】
先求出球心到四個支點所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【題目詳解】設(shè)四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【題目點撥】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.11、D【解題分析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【題目詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【題目點撥】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運(yùn)算的核心素養(yǎng)12、A【解題分析】
利用兩角和與差的余弦公式展開計算可得結(jié)果.【題目詳解】,.故選:A.【題目點撥】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
不妨設(shè)雙曲線,焦點,令,由的長為實軸的二倍能夠推導(dǎo)出的離心率.【題目詳解】不妨設(shè)雙曲線,焦點,對稱軸,由題設(shè)知,因為的長為實軸的二倍,,,,故答案為.【題目點撥】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應(yīng)先將用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的等式,從而求出的值.14、1【解題分析】
根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時,(為常數(shù))求解.【題目詳解】因為為定義在上的偶函數(shù),所以,又因為當(dāng)時,,所以,所以實數(shù)的值為1.故答案為:1【題目點撥】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.15、9【解題分析】
根據(jù)集合交集的定義即得.【題目詳解】集合,,,,則a的值是9.故答案為:9【題目點撥】本題考查集合的交集,是基礎(chǔ)題.16、【解題分析】
由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【題目詳解】,,,,.故答案為:.【題目點撥】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(i)(ii)分布列見解析,【解題分析】
(1)先計算甲、乙、丙同學(xué)分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應(yīng)的概率,列出分布列,計算數(shù)學(xué)期望即得解.【題目詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學(xué)都選高校,共有四種情況,甲同學(xué)選高校的概率為,因此乙、丙兩同學(xué)選高校的概率為,因為每位同學(xué)彼此獨立,所以甲、乙、丙三名同學(xué)都選高校的概率為.(2)(i)甲同學(xué)必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學(xué)彼此獨立,所以甲同學(xué)選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學(xué)期望為.【題目點撥】本題考查了事件獨立性的應(yīng)用和隨機(jī)變量的分布列和期望,考查了學(xué)生綜合分析,概念理解,實際應(yīng)用,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18、(1),(2)最大值,最小值【解題分析】
(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標(biāo)方程,展開有,再根據(jù)求解.(2)因為曲線C是一個半圓,利用數(shù)形結(jié)合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【題目詳解】(1)因為曲線的參數(shù)方程為所以兩式平方相加得:因為直線的極坐標(biāo)方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【題目點撥】本題主要考查參數(shù)方程,普通方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與圓的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.19、(1)有的把握認(rèn)為喜歡物理與性別有關(guān);(2)分布列見解析,.【解題分析】
(1)根據(jù)題目所給信息,列出列聯(lián)表,計算的觀測值,對照臨界值表可得出結(jié)論;(2)設(shè)參加座談會的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,確定的所有取值為、、、、.根據(jù)計數(shù)原理計算出每個所對應(yīng)的概率,列出分布列計算期望即可.【題目詳解】(1)根據(jù)所給條件得列聯(lián)表如下:男女合計喜歡物理不喜歡物理合計,所以有的把握認(rèn)為喜歡物理與性別有關(guān);(2)設(shè)參加座談會的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.【題目點撥】本題考查了獨立性檢驗、離散型隨機(jī)變量的概率分布列.離散型隨機(jī)變量的期望.屬于中等題.20、(1)證明見詳解;(2).【解題分析】
(1)取中點為,通過證明//,進(jìn)而證明線面平行;(2)取中點為,以為坐標(biāo)原點建立直角坐標(biāo)系,求得兩個平面的法向量,用向量法解得二面角的大小.【題目詳解】(1)證明:取的中點,連結(jié),,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結(jié),,則,平面,以為原點,分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《溝通中外文明的“絲綢之路”》聽課評課記錄3(新部編人教版七年級上冊歷史)
- 人教版部編歷史九年級下冊《第5課 第二次工業(yè)革命》聽課評課記錄
- 湘教版數(shù)學(xué)九年級上冊3.4.1《相似三角的判定》(第1課時)聽評課記錄
- 人教部編版九年級歷史下冊聽課評課記錄:第4課《日本明治維新》
- 北師大版歷史八年級上冊第2課《第二次鴉片戰(zhàn)爭》聽課評課記錄
- 蘇教版四年級數(shù)學(xué)上冊期末復(fù)習(xí)口算練習(xí)題一
- 蘇教版二年級數(shù)學(xué)下冊《兩位數(shù)減兩位數(shù)的口算》教學(xué)設(shè)計
- 上市或擬上市公司獨立董事聘任合同范本
- 孵化器委托運(yùn)營協(xié)議書范本
- 企業(yè)承包合同范本
- 2023年菏澤醫(yī)學(xué)??茖W(xué)校單招綜合素質(zhì)模擬試題及答案解析
- 鋁合金門窗設(shè)計說明
- 常見食物的嘌呤含量表匯總
- 小學(xué)數(shù)學(xué)-三角形面積計算公式的推導(dǎo)教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 人教版數(shù)學(xué)八年級下冊同步練習(xí)(含答案)
- SB/T 10752-2012馬鈴薯雪花全粉
- 2023年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招(英語)試題庫含答案解析
- 秦暉社會主義思想史課件
- 積累運(yùn)用表示動作的詞語課件
- 機(jī)動車登記證書英文證書模板
- 質(zhì)量管理體系基礎(chǔ)知識培訓(xùn)-2016
評論
0/150
提交評論