2024屆河北省張家口市宣化市一中高三下第三次月考綜合試卷_第1頁
2024屆河北省張家口市宣化市一中高三下第三次月考綜合試卷_第2頁
2024屆河北省張家口市宣化市一中高三下第三次月考綜合試卷_第3頁
2024屆河北省張家口市宣化市一中高三下第三次月考綜合試卷_第4頁
2024屆河北省張家口市宣化市一中高三下第三次月考綜合試卷_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆河北省張家口市宣化市一中高三下第三次月考綜合試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.2.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.3.設函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,4.已知復數(shù),為的共軛復數(shù),則()A. B. C. D.5.設i是虛數(shù)單位,若復數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.36.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.47.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.68.已知復數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.9.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()10.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.11.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于12.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的準線上一點,F(xiàn)為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F(xiàn)是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.14.已知i為虛數(shù)單位,復數(shù),則=_______.15.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.16.各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點.(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點,使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.18.(12分)已知函數(shù).⑴當時,求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.19.(12分)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術支援,現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?附:,0.0500.0100.0013.8416.63510.82820.(12分)移動支付(支付寶及微信支付)已經(jīng)漸漸成為人們購物消費的一種支付方式,為調(diào)查市民使用移動支付的年齡結構,隨機對100位市民做問卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補充完整,并請說明在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡是否有關?(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進一步的問卷調(diào)查,從這10人隨機中選出3人頒發(fā)參與獎勵,設年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)21.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以為極點,軸正半軸為極軸的極坐標中,曲線:.(1)當時,求與的交點的極坐標;(2)直線與曲線交于,兩點,線段中點為,求的值.22.(10分)某企業(yè)現(xiàn)有A.B兩套設備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項質量指標值,若該項質量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設備抽取的樣本頻率分布直方圖,表1是從B設備抽取的樣本頻數(shù)分布表.圖1:A設備生產(chǎn)的樣本頻率分布直方圖表1:B設備生產(chǎn)的樣本頻數(shù)分布表質量指標值頻數(shù)2184814162(1)請估計A.B設備生產(chǎn)的產(chǎn)品質量指標的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質量指標值落在內(nèi)的定為一等品,每件利潤240元;質量指標值落在或內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟效益的角度考慮企業(yè)應該對哪一套設備加大生產(chǎn)規(guī)模?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【題目詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【題目點撥】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.2、B【解題分析】

設,代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關系,從而得到的等式,求出離心率.【題目詳解】,設,則,兩式相減得,∴,.故選:B.【題目點撥】本題考查求雙曲線的離心率,解題方法是點差法,即出現(xiàn)雙曲線的弦中點坐標時,可設弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關系.3、D【解題分析】

根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【題目詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【題目點撥】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.4、C【解題分析】

求出,直接由復數(shù)的代數(shù)形式的乘除運算化簡復數(shù).【題目詳解】.故選:C【題目點撥】本題考查復數(shù)的代數(shù)形式的四則運算,共軛復數(shù),屬于基礎題.5、A【解題分析】

根據(jù)復數(shù)除法運算化簡,結合純虛數(shù)定義即可求得m的值.【題目詳解】由復數(shù)的除法運算化簡可得,因為是純虛數(shù),所以,∴,故選:A.【題目點撥】本題考查了復數(shù)的概念和除法運算,屬于基礎題.6、B【解題分析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。7、B【解題分析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【題目詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【題目點撥】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.8、D【解題分析】

把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的公式計算得答案.【題目詳解】解:,則.故選:D.【題目點撥】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎題.9、D【解題分析】

由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【題目詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【題目點撥】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.10、D【解題分析】

根據(jù),先確定出的長度,然后利用雙曲線定義將轉化為的關系式,化簡后可得到的值,即可求漸近線方程.【題目詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【題目點撥】本題考查根據(jù)雙曲線中的長度關系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.11、D【解題分析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關系,平面的基本性質及其推論.12、D【解題分析】由題意得,函數(shù)點定義域為且,所以定義域關于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關于原點對稱,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據(jù)拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據(jù)雙曲線定義得到實軸長,結合焦距可求得所求的離心率.【題目詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【題目點撥】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應用、雙曲線定義的應用;關鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據(jù)拋物線切線方程的求解方法求得點坐標.14、【解題分析】

先把復數(shù)進行化簡,然后利用求模公式可得結果.【題目詳解】.故答案為:.【題目點撥】本題主要考查復數(shù)模的求解,利用復數(shù)的運算把復數(shù)化為的形式是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).15、【解題分析】

用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y果數(shù),再計算即得.【題目詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【題目點撥】本題考查隨機事件的概率,是基礎題.16、【解題分析】

將已知由前n項和定義整理為,再由等比數(shù)列性質求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【題目詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【題目點撥】本題考查在等比數(shù)列中由前n項和關系求公比,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點,,使直線與平面所成的角正弦值為.【解題分析】

(Ⅰ)取中點,連結、,推導出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點,連結,,推導出平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值;(Ⅲ)假設在線段上是存在一點,使直線與平面所成的角正弦值為,設.利用向量法能求出結果.【題目詳解】(Ⅰ)證明:取中點,連結、,是邊長為2的等邊三角形,,,,點為的中點,,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取中點,連結,,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點,平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,,1,,,0,,,1,,,0,,,,,,0,,,,,設平面的法向量,,,則,取,得,,,設平面的法向量,,,則,取,得,設二面角的平面角為,則.二面角的余弦值為.(Ⅲ)解:假設在線段上是存在一點,使直線與平面所成的角正弦值為,設.則,,,,,,平面的法向量,,解得,線段上是存在一點,,使直線與平面所成的角正弦值為.【題目點撥】本題考查線面平行的證明,考查二面角的余弦值的求法,考查滿足正弦值的點是否存在的判斷與求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.18、(1)當時,函數(shù)取得極小值為,無極大值;(2)【解題分析】試題分析:(1),通過求導分析,得函數(shù)取得極小值為,無極大值;(2),所以,通過求導討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域為當時,,所以所以當時,,當時,,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當時,函數(shù)取得極小值為,無極大值;(2)設函數(shù)上點與函數(shù)上點處切線相同,則所以所以,代入得:設,則不妨設則當時,,當時,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,代入可得:設,則對恒成立,所以在區(qū)間上單調(diào)遞增,又所以當時,即當時,又當時因此當時,函數(shù)必有零點;即當時,必存在使得成立;即存在使得函數(shù)上點與函數(shù)上點處切線相同.又由得:所以單調(diào)遞減,因此所以實數(shù)的取值范圍是.19、(1)190(2)見解析(3)可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關.【解題分析】

(1)排序后第10和第11兩個數(shù)的平均數(shù)為中位數(shù);(2)由莖葉圖可得列聯(lián)表;(3)由列聯(lián)表計算可得結論.【題目詳解】解:(1).(2)抗倒伏易倒伏矮莖154高莖1016(3)由于,因此可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關.【題目點撥】本題考查莖葉圖,考查獨立性檢驗,正確認識莖葉圖是解題關鍵.20、(1)列聯(lián)表見解析,在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關;(2)分布列見解析,期望為.【解題分析】

(1)根據(jù)題中所給的條件補全列聯(lián)表,根據(jù)列聯(lián)表求出觀測值,把觀測值同臨界值進行比較,得到能在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關.(2)首先確定的取值,求出相應的概率,可得分布列和數(shù)學期望.【題目詳解】(1)根據(jù)題意及列聯(lián)表可得完整的列聯(lián)表如下:35歲以下(含35歲)35歲以上合計使用移動支付401050不使用移動支付104050合計5050100根據(jù)公式可得,所以在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關.(2)根據(jù)分層抽樣,可知35歲以下(含35歲)的人數(shù)為8人,35歲以上的有2人,所以獲得獎勵的35歲以下(含35歲)的人數(shù)為,則的可能為1,2,3,且,,,其分布列為123.【題目點撥】獨立性檢驗依據(jù)的值結合附表數(shù)據(jù)進行判斷,另外,離散型隨機變量的分布列,在求解的過程中,注意變量的取值以及對應的概率要計算正確,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論