2024屆赤峰市重點(diǎn)中學(xué)高三第四次聯(lián)考數(shù)學(xué)試題文試卷_第1頁(yè)
2024屆赤峰市重點(diǎn)中學(xué)高三第四次聯(lián)考數(shù)學(xué)試題文試卷_第2頁(yè)
2024屆赤峰市重點(diǎn)中學(xué)高三第四次聯(lián)考數(shù)學(xué)試題文試卷_第3頁(yè)
2024屆赤峰市重點(diǎn)中學(xué)高三第四次聯(lián)考數(shù)學(xué)試題文試卷_第4頁(yè)
2024屆赤峰市重點(diǎn)中學(xué)高三第四次聯(lián)考數(shù)學(xué)試題文試卷_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆赤峰市重點(diǎn)中學(xué)高三第四次聯(lián)考數(shù)學(xué)試題文試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則的值等于()A. B. C. D.2.過(guò)拋物線的焦點(diǎn)的直線與拋物線交于、兩點(diǎn),且,拋物線的準(zhǔn)線與軸交于,的面積為,則()A. B. C. D.3.在棱長(zhǎng)為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.104.已知,則()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實(shí)數(shù)值的個(gè)數(shù)為()A.1 B.2 C.3 D.46.正的邊長(zhǎng)為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.7.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實(shí)數(shù)()A. B. C. D.8.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長(zhǎng)度的集合,則()A.B.C.D.9.若集合,則=()A. B. C. D.10.在中,角的對(duì)邊分別為,若.則角的大小為()A. B. C. D.11.若非零實(shí)數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.12.如圖所示的程序框圖,若輸入,,則輸出的結(jié)果是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),則雙曲線C的離心率為_(kāi)_______.14.已知數(shù)列的各項(xiàng)均為正數(shù),記為數(shù)列的前項(xiàng)和,若,,則______.15.已知數(shù)列的前項(xiàng)和公式為,則數(shù)列的通項(xiàng)公式為_(kāi)__.16.在正方體中,分別為棱的中點(diǎn),則直線與直線所成角的正切值為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列中,,前項(xiàng)和為,若對(duì)任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項(xiàng)和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問(wèn):是否存在數(shù)列,使得對(duì)任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請(qǐng)說(shuō)明理由.18.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長(zhǎng)為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長(zhǎng)為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.19.(12分)已知定點(diǎn),,直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。(1)求曲線的方程;(2)過(guò)點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。20.(12分)已知函數(shù),當(dāng)時(shí),有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.21.(12分)已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),為數(shù)列的前項(xiàng)和,記,證明:.22.(10分)已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為等差數(shù)列{an}的前n項(xiàng)和,.(1)求數(shù)列{an}的通項(xiàng)an;(2)設(shè)bn=an?3n,求數(shù)列{bn}的前n項(xiàng)和Tn.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】

由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【題目詳解】∵∴由余弦公式的二倍角展開(kāi)式有又∵∴故選:A【題目點(diǎn)撥】本題考查了學(xué)生對(duì)二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡(jiǎn)單題2、B【解題分析】

設(shè)點(diǎn)、,并設(shè)直線的方程為,由得,將直線的方程代入韋達(dá)定理,求得,結(jié)合的面積求得的值,結(jié)合焦點(diǎn)弦長(zhǎng)公式可求得.【題目詳解】設(shè)點(diǎn)、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達(dá)定理得,,,,,,,,可得,,拋物線的準(zhǔn)線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【題目點(diǎn)撥】本題考查拋物線焦點(diǎn)弦長(zhǎng)的計(jì)算,計(jì)算出拋物線的方程是解答的關(guān)鍵,考查計(jì)算能力,屬于中等題.3、C【解題分析】

取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【題目詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【題目點(diǎn)撥】此題考查三棱錐的外接球半徑與棱長(zhǎng)的關(guān)系,及球的表面積公式,解題時(shí)要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.4、D【解題分析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,即當(dāng)?shù)讛?shù)大于1時(shí)單調(diào)遞增,當(dāng)?shù)讛?shù)大于零小于1時(shí)單調(diào)遞減,對(duì)選項(xiàng)逐一驗(yàn)證即可得到正確答案.【題目詳解】因?yàn)椋?,所以是減函數(shù),又因?yàn)?,所以,,所以,,所以A,B兩項(xiàng)均錯(cuò);又,所以,所以C錯(cuò);對(duì)于D,,所以,故選D.【題目點(diǎn)撥】這個(gè)題目考查的是應(yīng)用不等式的性質(zhì)和指對(duì)函數(shù)的單調(diào)性比較大小,兩個(gè)式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時(shí)可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.5、C【解題分析】試題分析:根據(jù)題意,當(dāng)時(shí),令,得;當(dāng)時(shí),令,得,故輸入的實(shí)數(shù)值的個(gè)數(shù)為1.考點(diǎn):程序框圖.6、D【解題分析】

如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【題目詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)?,故,因?yàn)?,?由正弦定理可得,故,又因?yàn)椋?因?yàn)?,故平面,所以,因?yàn)槠矫?,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【題目點(diǎn)撥】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問(wèn)題注意翻折前后的變量與不變量,外接球問(wèn)題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來(lái)計(jì)算,本題有一定的難度.7、B【解題分析】

求出,把坐標(biāo)代入方程可求得.【題目詳解】據(jù)題意,得,所以,所以.故選:B.【題目點(diǎn)撥】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過(guò)中心點(diǎn)可計(jì)算參數(shù)值.8、D【解題分析】

如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件,故,得到答案.【題目詳解】如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【題目點(diǎn)撥】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計(jì)算能力.9、C【解題分析】

求出集合,然后與集合取交集即可.【題目詳解】由題意,,,則,故答案為C.【題目點(diǎn)撥】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.10、A【解題分析】

由正弦定理化簡(jiǎn)已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【題目詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【題目點(diǎn)撥】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.11、C【解題分析】

令,則,,將指數(shù)式化成對(duì)數(shù)式得、后,然后取絕對(duì)值作差比較可得.【題目詳解】令,則,,,,,因此,.故選:C.【題目點(diǎn)撥】本題考查了利用作差法比較大小,同時(shí)也考查了指數(shù)式與對(duì)數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.12、B【解題分析】

列舉出循環(huán)的每一步,可得出輸出結(jié)果.【題目詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【題目點(diǎn)撥】本題考查利用程序框圖計(jì)算輸出結(jié)果,一般要將算法的每一步列舉出來(lái),考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

由等腰三角形及雙曲線的對(duì)稱性可知或,進(jìn)而利用兩點(diǎn)間距離公式求解即可.【題目詳解】由題設(shè)雙曲線的左、右焦點(diǎn)分別為,,因?yàn)樽?、右焦點(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),當(dāng)時(shí),,由可得,等式兩邊同除可得,解得(舍);當(dāng)時(shí),,由可得,等式兩邊同除可得,解得,故答案為:【題目點(diǎn)撥】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應(yīng)用,考查分類討論思想.14、63【解題分析】

對(duì)進(jìn)行化簡(jiǎn),可得,再根據(jù)等比數(shù)列前項(xiàng)和公式進(jìn)行求解即可【題目詳解】由數(shù)列為首項(xiàng)為,公比的等比數(shù)列,所以63【題目點(diǎn)撥】本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時(shí),常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)15、【解題分析】

由題意,根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,即可求得數(shù)列的通項(xiàng)公式.【題目詳解】由題意,可知當(dāng)時(shí),;當(dāng)時(shí),.又因?yàn)椴粷M足,所以.【題目點(diǎn)撥】本題主要考查了利用數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系求解數(shù)列的通項(xiàng)公式,其中解答中熟記數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、【解題分析】

由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計(jì)算可得.【題目詳解】如圖,連接,,,∵分別為棱的中點(diǎn),∴,又正方體中,即是平行四邊形,∴,∴,(或其補(bǔ)角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.【題目點(diǎn)撥】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)存在,【解題分析】

由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項(xiàng)公式即可求出,進(jìn)而求出;由題意得,,,兩式相減得,,據(jù)此可得,當(dāng)時(shí),,進(jìn)而可得,即數(shù)列為常數(shù)列,進(jìn)而可得,結(jié)合,得到關(guān)于的不等式,再由時(shí),且為整數(shù)即可求出符合題意的的所有值.【題目詳解】因?yàn)閿?shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,因?yàn)?,所?(2)由題意得,故,兩式相減得所以,當(dāng)時(shí),又因?yàn)樗援?dāng)時(shí),所以成立,所以當(dāng)時(shí),數(shù)列是常數(shù)列,所以因?yàn)楫?dāng)時(shí),成立,所以,所以在中令,因?yàn)?,所以可得,所以,由時(shí),且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【題目點(diǎn)撥】本題考查數(shù)列的新定義、等比數(shù)列的通項(xiàng)公式和數(shù)列遞推公式的運(yùn)用;考查運(yùn)算求解能力、邏輯推理能力和對(duì)新定義的理解能力;通過(guò)反復(fù)利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.18、(1),.(2)【解題分析】

(1)由余弦定理的,然后根據(jù)直線與圓相切的性質(zhì)求出,從而求出;(2)求得的表達(dá)式,通過(guò)求導(dǎo)研究函數(shù)的單調(diào)性求得最大值.【題目詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因?yàn)榕c半圓相切于,所以,所以,所以.所以四邊形的周長(zhǎng)為,.(2)設(shè)四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為.【題目點(diǎn)撥】本題考查余弦定理、直線與圓的位置關(guān)系、導(dǎo)數(shù)與函數(shù)最值的關(guān)系,考查考生的邏輯思維能力,運(yùn)算求解能力,以及函數(shù)與方程的思想.19、(1);(2)存在定點(diǎn),見(jiàn)解析【解題分析】

(1)設(shè)動(dòng)點(diǎn),則,利用,求出曲線的方程.(2)由已知直線過(guò)點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達(dá)定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【題目詳解】解:(1)設(shè)動(dòng)點(diǎn),則,,,即,化簡(jiǎn)得:。由已知,故曲線的方程為。(2)由已知直線過(guò)點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,則又直線與斜率分別為,,則。當(dāng)時(shí),,;當(dāng)時(shí),,。所以存在定點(diǎn),使得直線與斜率之積為定值?!绢}目點(diǎn)撥】本題考查軌跡方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.20、(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解題分析】

(1)由題意得到關(guān)于實(shí)數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【題目詳解】(1)由題意,函數(shù),則,由當(dāng)時(shí),有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當(dāng)時(shí),函數(shù)取得極小值,極小值為.當(dāng)時(shí),有極大值3.【題目點(diǎn)撥】本題主要考查了函數(shù)的極值的概念,以及利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導(dǎo)數(shù)與原函數(shù)的關(guān)系,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.21、(Ⅰ),;(Ⅱ)見(jiàn)解析【解題分析】

(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡(jiǎn)求得,然后求得,再用裂項(xiàng)相消法求,即可得到本題答案.【題目詳解】(Ⅰ)因?yàn)閿?shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,可設(shè)公比為q

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論