版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北省襄陽市普通高中2024屆高三第一次高考模擬考試數(shù)學(xué)試題文試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則2.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米3.某工廠只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產(chǎn)量分別占、、),根據(jù)該圖,以下結(jié)論一定正確的是()A.年該工廠的棉簽產(chǎn)量最少B.這三年中每年抽紙的產(chǎn)量相差不明顯C.三年累計(jì)下來產(chǎn)量最多的是口罩D.口罩的產(chǎn)量逐年增加4.設(shè)集合,,則().A. B.C. D.5.函數(shù),,則“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知,若,則等于()A.3 B.4 C.5 D.67.已知函數(shù)若對區(qū)間內(nèi)的任意實(shí)數(shù),都有,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.9.已知F是雙曲線(k為常數(shù))的一個(gè)焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.210.設(shè)過定點(diǎn)的直線與橢圓:交于不同的兩點(diǎn),,若原點(diǎn)在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.11.已知雙曲線C:()的左、右焦點(diǎn)分別為,過的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.12.已知集合,則集合的非空子集個(gè)數(shù)是()A.2 B.3 C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,點(diǎn),B均在拋物線上,等腰直角的斜邊為BC,點(diǎn)C在x軸的正半軸上,則點(diǎn)B的坐標(biāo)是________.14.如圖,是圓的直徑,弦的延長線相交于點(diǎn)垂直的延長線于點(diǎn).求證:15.設(shè)實(shí)數(shù)x,y滿足,則點(diǎn)表示的區(qū)域面積為______.16.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在某外國語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.女生男生總計(jì)獲獎(jiǎng)不獲獎(jiǎng)總計(jì)附表及公式:其中,.18.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價(jià)格(元)產(chǎn)品銷量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰的計(jì)算結(jié)果正確?(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)為的概率.19.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積20.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.21.(12分)如圖,過點(diǎn)且平行與x軸的直線交橢圓于A、B兩點(diǎn),且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點(diǎn)E、F,求證:是定值.22.(10分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.(1)求和的極坐標(biāo)方程;(2)過且傾斜角為的直線與交于點(diǎn),與交于另一點(diǎn),若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進(jìn)行判斷即可.【題目詳解】A:當(dāng)時(shí),也可以滿足∥,b∥,故本命題不正確;B:當(dāng)時(shí),也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當(dāng)∥,,時(shí),能得到,故本命題是正確的;D:當(dāng)時(shí),也可以滿足,b∥,故本命題不正確.故選:C【題目點(diǎn)撥】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.2、D【解題分析】
根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【題目詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【題目點(diǎn)撥】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.3、C【解題分析】
根據(jù)該廠每年產(chǎn)量未知可判斷A、B、D選項(xiàng)的正誤,根據(jù)每年口罩在該廠的產(chǎn)量中所占的比重最大可判斷C選項(xiàng)的正誤.綜合可得出結(jié)論.【題目詳解】由于該工廠年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無法比較,故A、B、D選項(xiàng)錯(cuò)誤;由堆積圖可知,從年至年,該工廠生產(chǎn)的口罩占該工廠的總產(chǎn)量的比重是最大的,則三年累計(jì)下來產(chǎn)量最多的是口罩,C選項(xiàng)正確.故選:C.【題目點(diǎn)撥】本題考查堆積圖的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.4、D【解題分析】
根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項(xiàng)即可得到答案.【題目詳解】根據(jù)題意,則故選:D【題目點(diǎn)撥】此題考查集合的交并集運(yùn)算,屬于簡單題目,5、B【解題分析】
根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【題目詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“的圖象關(guān)于軸對稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【題目點(diǎn)撥】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.6、C【解題分析】
先求出,再由,利用向量數(shù)量積等于0,從而求得.【題目詳解】由題可知,因?yàn)?,所以有,得,故選:C.【題目點(diǎn)撥】該題考查的是有關(guān)向量的問題,涉及到的知識點(diǎn)有向量的減法坐標(biāo)運(yùn)算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.7、C【解題分析】分析:先求導(dǎo),再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實(shí)數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實(shí)數(shù)a的取值范圍.詳解:由題得.當(dāng)a<1時(shí),,所以函數(shù)f(x)在單調(diào)遞減,因?yàn)閷^(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當(dāng)1≤a<e時(shí),函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因?yàn)閷^(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當(dāng)1≤a<e時(shí),滿足題意.當(dāng)a時(shí),函數(shù)f(x)在(0,1)單調(diào)遞增,因?yàn)閷^(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點(diǎn)睛:本題的難點(diǎn)在于“對區(qū)間內(nèi)的任意實(shí)數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個(gè)條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學(xué)問題的等價(jià)轉(zhuǎn)化,找到了問題的突破口.8、A【解題分析】
根據(jù)實(shí)數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【題目詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號成立,∴,∴.故選:A.【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.9、D【解題分析】
分析可得,再去絕對值化簡成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【題目詳解】當(dāng)時(shí),等式不是雙曲線的方程;當(dāng)時(shí),,可化為,可得虛半軸長,所以點(diǎn)F到雙曲線C的一條漸近線的距離為2.故選:D【題目點(diǎn)撥】本題考查雙曲線的方程與點(diǎn)到直線的距離.屬于基礎(chǔ)題.10、D【解題分析】
設(shè)直線:,,,由原點(diǎn)在以為直徑的圓的外部,可得,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,即可求得答案.【題目詳解】顯然直線不滿足條件,故可設(shè)直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【題目點(diǎn)撥】本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識和圓錐曲線與直線交點(diǎn)問題時(shí),通常用直線和圓錐曲線聯(lián)立方程組,通過韋達(dá)定理建立起目標(biāo)的關(guān)系式,考查了分析能力和計(jì)算能力,屬于中檔題.11、D【解題分析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【題目詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【題目點(diǎn)撥】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.12、C【解題分析】
先確定集合中元素,可得非空子集個(gè)數(shù).【題目詳解】由題意,共3個(gè)元素,其子集個(gè)數(shù)為,非空子集有7個(gè).故選:C.【題目點(diǎn)撥】本題考查集合的概念,考查子集的概念,含有個(gè)元素的集合其子集個(gè)數(shù)為,非空子集有個(gè).二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
設(shè)出兩點(diǎn)的坐標(biāo),結(jié)合拋物線方程、兩條直線垂直的條件以及兩點(diǎn)間的距離公式列方程,解方程求得的坐標(biāo).【題目詳解】設(shè),由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【題目點(diǎn)撥】本題考查拋物線的方程和運(yùn)用,考查方程思想和運(yùn)算能力,屬于中檔題.14、證明見解析.【解題分析】試題分析:四點(diǎn)共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因?yàn)闉閳A的直徑,所以,又,則四點(diǎn)共圓,所以.又△∽△,所以,即,∴.15、【解題分析】
先畫出滿足條件的平面區(qū)域,求出交點(diǎn)坐標(biāo),利用定積分即可求解.【題目詳解】畫出實(shí)數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【題目點(diǎn)撥】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.16、2【解題分析】
根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【題目詳解】因?yàn)?累加可得.若,注意到當(dāng)時(shí),,不滿足對任意的正整數(shù)均有.所以.當(dāng)時(shí),證明:對任意的正整數(shù)都有.當(dāng)時(shí),成立.假設(shè)當(dāng)時(shí)結(jié)論成立,即,則,即結(jié)論對也成立.由數(shù)學(xué)歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【題目點(diǎn)撥】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時(shí)注意結(jié)合參數(shù)的范圍問題進(jìn)行分析.屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),;(Ⅱ)詳見解析.【解題分析】
(Ⅰ)根據(jù)概率的性質(zhì)知所有矩形的面積之和等于列式可解得;(Ⅱ)由頻率分布直方圖知樣本中獲獎(jiǎng)的人數(shù)為,不獲獎(jiǎng)的人數(shù)為,從而可得列聯(lián)表,再計(jì)算出,與臨界值比較可得.【題目詳解】解:(Ⅰ),.(Ⅱ)由頻率分布直方圖知樣本中獲獎(jiǎng)的人數(shù)為,不獲獎(jiǎng)的人數(shù)為,列聯(lián)表如下:女生男生總計(jì)獲獎(jiǎng)不獲獎(jiǎng)總計(jì)因?yàn)?所以在犯錯(cuò)誤的概率不超過的前提下能認(rèn)為“獲獎(jiǎng)與女生,男生有關(guān).”【題目點(diǎn)撥】本題主要考查獨(dú)立性檢驗(yàn),以及由頻率分布直方圖求平均數(shù)的問題,熟記獨(dú)立性檢驗(yàn)的思想,以及平均數(shù)的計(jì)算方法即可,屬于??碱}型.18、(1)乙同學(xué)正確;(2).【解題分析】
(1)根據(jù)變量且有線性負(fù)相關(guān)關(guān)系判斷甲不正確.根據(jù)回歸直線方程過樣本中心點(diǎn),判斷出乙正確.(2)由線性回歸方程得到的估計(jì)數(shù)據(jù),計(jì)算出誤差,求得“理想數(shù)據(jù)”的個(gè)數(shù),由此利用古典概型概率計(jì)算公式,求得所求概率.【題目詳解】(1)已知變量具有線性負(fù)相關(guān)關(guān)系,故甲不正確,,代入兩個(gè)回歸方程,驗(yàn)證乙同學(xué)正確,故回歸方程為:(2)由(1)得到的回歸方程,計(jì)算估計(jì)數(shù)據(jù)如下表:021212由上表可知,“理想數(shù)據(jù)”的個(gè)數(shù)為.用列舉法可知,從個(gè)不同數(shù)據(jù)里抽出個(gè)不同數(shù)據(jù)的方法有種.從符合條件的個(gè)不同數(shù)據(jù)中抽出個(gè),還要在不符合條件的個(gè)不同數(shù)據(jù)中抽出個(gè)的方法有種.故所求概率為【題目點(diǎn)撥】本小題主要考查回歸直線方程的判斷,考查古典概型概率計(jì)算,考查數(shù)據(jù)處理能力,屬于中檔題.19、(1).(2).【解題分析】
由已知利用正弦定理,同角三角函數(shù)基本關(guān)系式可求,結(jié)合范圍,可求,由已知利用二倍角的余弦函數(shù)公式可得,結(jié)合范圍,可求A,根據(jù)三角形的內(nèi)角和定理即可解得C的值.由及正弦定理可得b的值,根據(jù)兩角和的正弦函數(shù)公式可求sinC的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【題目詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【題目點(diǎn)撥】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,二倍角的余弦函數(shù)公式,三角形的內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式等知識在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.20、(1)(2)【解題分析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙人技術(shù)入股協(xié)議書合同
- 大班音樂《小白船》課件
- 2024年遼寧駕駛員客運(yùn)從業(yè)資格證考試題及答案
- 2024年重慶2024年客運(yùn)從業(yè)資格證考試試題
- 2024【房屋拆除合同范本】建筑拆除合同范本
- 2024職工食堂承包合同范本
- 2024家居工程裝修合同范本
- 2024農(nóng)村水庫承包合同書
- 2024項(xiàng)目投資咨詢合同版
- 深圳大學(xué)《游泳俱樂部》2023-2024學(xué)年第一學(xué)期期末試卷
- 《百團(tuán)大戰(zhàn)》歷史課件
- 銀行涉農(nóng)貸款專項(xiàng)統(tǒng)計(jì)制度講解
- DB31-T 540-2022 重點(diǎn)單位消防安全管理要求
- 兒化音變課件
- 國家開放大學(xué)《傳感器與測試技術(shù)》實(shí)驗(yàn)參考答案
- 工程造價(jià)司法鑒定實(shí)施方案
- 材料成型工藝基礎(chǔ)習(xí)題答案
- 劇本寫作課件
- 計(jì)算方法第三章函數(shù)逼近與快速傅里葉變換課件
- 五年級上冊英語課件-Unit7 At weekends第四課時(shí)|譯林版(三起) (共13張PPT)
- 2022年秋新教材高中英語Unit2SuccessTheImportanceofFailure教案北師大版選擇性必修第一冊
評論
0/150
提交評論