2024屆新疆維吾爾自治區(qū)托克遜縣第二中學高三5月份月考數(shù)學試題試卷_第1頁
2024屆新疆維吾爾自治區(qū)托克遜縣第二中學高三5月份月考數(shù)學試題試卷_第2頁
2024屆新疆維吾爾自治區(qū)托克遜縣第二中學高三5月份月考數(shù)學試題試卷_第3頁
2024屆新疆維吾爾自治區(qū)托克遜縣第二中學高三5月份月考數(shù)學試題試卷_第4頁
2024屆新疆維吾爾自治區(qū)托克遜縣第二中學高三5月份月考數(shù)學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆新疆維吾爾自治區(qū)托克遜縣第二中學高三5月份月考數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.32.復數(shù)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.4.“紋樣”是中國藝術寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內,并向該正方形內隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.5.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.6.如圖,這是某校高三年級甲、乙兩班在上學期的5次數(shù)學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學成績平均分的平均水平高于乙班B.甲班的數(shù)學成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學測試的總平均分是1037.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.8.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或9.已知實數(shù)集,集合,集合,則()A. B. C. D.10.設等比數(shù)列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.12.中國古代數(shù)學著作《孫子算經》中有這樣一道算術題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記復數(shù)z=a+bi(i為虛數(shù)單位)的共軛復數(shù)為,已知z=2+i,則_____.14.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________15.若函數(shù)的圖像與直線的三個相鄰交點的橫坐標分別是,,,則實數(shù)的值為________.16.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大??;(2)在棱上確定一點,使二面角的平面角的余弦值為.18.(12分)如圖:在中,,,.(1)求角;(2)設為的中點,求中線的長.19.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.20.(12分)已知函數(shù),其中.(Ⅰ)若,求函數(shù)的單調區(qū)間;(Ⅱ)設.若在上恒成立,求實數(shù)的最大值.21.(12分)某網絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學期望.22.(10分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)設直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【題目詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【題目點撥】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.2、A【解題分析】

試題分析:由題意可得:.共軛復數(shù)為,故選A.考點:1.復數(shù)的除法運算;2.以及復平面上的點與復數(shù)的關系3、A【解題分析】

設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【題目詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.

故選:A.【題目點撥】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.4、D【解題分析】

直接根據(jù)幾何概型公式計算得到答案.【題目詳解】根據(jù)幾何概型:,故.故選:.【題目點撥】本題考查了根據(jù)幾何概型求面積,意在考查學生的計算能力和應用能力.5、C【解題分析】

設,根據(jù)導數(shù)的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【題目詳解】圓可化為.設,則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【題目點撥】本題考查直線與圓位置關系、直線與拋物線位置關系,拋物線兩切點所在直線求解是解題的關鍵,屬于中檔題.6、D【解題分析】

計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【題目詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【題目點撥】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學生的計算能力和應用能力.7、C【解題分析】

由于中正項與負項交替出現(xiàn),根據(jù)可排除選項A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.8、C【解題分析】

先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【題目詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯(lián)立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【題目點撥】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.9、A【解題分析】

可得集合,求出補集,再求出即可.【題目詳解】由,得,即,所以,所以.故選:A【題目點撥】本題考查了集合的補集和交集的混合運算,屬于基礎題.10、C【解題分析】

根據(jù)等比數(shù)列的前項和公式,判斷出正確選項.【題目詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【題目點撥】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項和公式,屬于基礎題.11、D【解題分析】

畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結合可得結果.【題目詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【題目點撥】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.12、C【解題分析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、3﹣4i【解題分析】

計算得到z2=(2+i)2=3+4i,再計算得到答案.【題目詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.【題目點撥】本題考查了復數(shù)的運算,共軛復數(shù),意在考查學生的計算能力.14、【解題分析】

利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【題目詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【題目點撥】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.15、4【解題分析】

由題可分析函數(shù)與的三個相鄰交點中不相鄰的兩個交點距離為,即,進而求解即可【題目詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【題目點撥】本題考查正弦型函數(shù)周期的應用,考查求正弦型函數(shù)中的16、【解題分析】

將四面體補成一個正方體,通過正方體的對角線與球的半徑的關系,得到球的半徑,利用球的表面積公式,即可求解.【題目詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.【題目點撥】本題主要考查了有關求得組合體的結構特征,以及球的表面積的計算,其中巧妙構造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】試題分析:(1)因為AB⊥AC,A1B⊥平面ABC,所以以A為坐標原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標系,由AB=AC=A1B=2求出所要用到的點的坐標,求出棱AA1與BC上的兩個向量,由向量的夾角求棱AA1與BC所成的角的大小;

(2)設棱B1C1上的一點P,由向量共線得到P點的坐標,然后求出兩個平面PAB與平面ABA1的一個法向量,把二面角P-AB-A1的平面角的余弦值為,轉化為它們法向量所成角的余弦值,由此確定出P點的坐標.試題解析:解(1)如圖,以為原點建立空間直角坐標系,則,.,故與棱所成的角是.(2)為棱中點,設,則.設平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點,其坐標為.點睛:本題主要考查線面垂直的判定與性質,以及利用空間向量求二面角.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據(jù)定理結論求出相應的角和距離.18、(1);(2)【解題分析】

(1)通過求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結果.【題目詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【題目點撥】本題主要考查了正弦定理和余弦定理在解三角形中的應用,考查三角函數(shù)知識的運用,屬于中檔題.19、(1)見解析;(2).【解題分析】試題分析:(1)利用平方法消去參數(shù),即可得到的普通方程,兩邊同乘以利用即可得的直角坐標方程;(2)設直線的參數(shù)方程為(為參數(shù)),代入,利用韋達定理、直線參數(shù)方程的幾何意義以及三角函數(shù)的有界性可得結果.試題解析:(1)曲線的普通方程為,曲線的直角坐標方程為;(2)設直線的參數(shù)方程為(為參數(shù))又直線與曲線:存在兩個交點,因此.聯(lián)立直線與曲線:可得則聯(lián)立直線與曲線:可得,則即20、(Ⅰ)單調遞減區(qū)間為,單調遞增區(qū)間為;(Ⅱ).【解題分析】

(Ⅰ)求出函數(shù)的定義域以及導數(shù),利用導數(shù)可求出該函數(shù)的單調遞增區(qū)間和單調遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時,構造函數(shù),利用導數(shù)證明出在上恒成立;在時,經過分析得出,然后構造函數(shù),利用導數(shù)證明出在上恒成立,由此得出,進而可得出實數(shù)的最大值.【題目詳解】(Ⅰ)函數(shù)的定義域為.當時,.令,解得(舍去),.當時,,所以,函數(shù)在上單調遞減;當時,,所以,函數(shù)在上單調遞增.因此,函數(shù)的單調遞減區(qū)間為,單調遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構造函數(shù),,則,,,.又,在上恒成立.所以,函數(shù)在上單調遞增,當時,在上恒成立.(ii)若,構造函數(shù),.,所以,函數(shù)在上單調遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當,即時,函數(shù)在上單調遞

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論