2024屆江蘇省泰興市西城中學(xué)高三下學(xué)期起點考試數(shù)學(xué)試題試卷_第1頁
2024屆江蘇省泰興市西城中學(xué)高三下學(xué)期起點考試數(shù)學(xué)試題試卷_第2頁
2024屆江蘇省泰興市西城中學(xué)高三下學(xué)期起點考試數(shù)學(xué)試題試卷_第3頁
2024屆江蘇省泰興市西城中學(xué)高三下學(xué)期起點考試數(shù)學(xué)試題試卷_第4頁
2024屆江蘇省泰興市西城中學(xué)高三下學(xué)期起點考試數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省泰興市西城中學(xué)高三下學(xué)期起點考試數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,2.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,則實數(shù)的取值范圍為()A. B. C. D.3.已知集合,,,則集合()A. B. C. D.4.已知雙曲線,為坐標(biāo)原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.5.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標(biāo)原點),則雙曲線的離心率為()A. B.3 C. D.6.函數(shù)的圖象大致是()A. B.C. D.7.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.8.已知,且,則的值為()A. B. C. D.9.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c10.設(shè)函數(shù)的定義域為,滿足,且當(dāng)時,.若對任意,都有,則的取值范圍是().A. B. C. D.11.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無數(shù)條直線與l相交12.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,的夾角為30°,,則_________.14.已知集合,其中,.且,則集合中所有元素的和為_________.15.已知角的終邊過點,則______.16.曲線在處的切線方程是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.18.(12分)某公司欲投資一新型產(chǎn)品的批量生產(chǎn),預(yù)計該產(chǎn)品的每日生產(chǎn)總成本價格)(單位:萬元)是每日產(chǎn)量(單位:噸)的函數(shù):.(1)求當(dāng)日產(chǎn)量為噸時的邊際成本(即生產(chǎn)過程中一段時間的總成本對該段時間產(chǎn)量的導(dǎo)數(shù));(2)記每日生產(chǎn)平均成本求證:;(3)若財團(tuán)每日注入資金可按數(shù)列(單位:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.19.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學(xué)校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對題目的個數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.20.(12分)已知函數(shù),若的解集為.(1)求的值;(2)若正實數(shù),,滿足,求證:.21.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實數(shù)a;若不能,請說明理由.(2)若在處取得極大值,求實數(shù)a的取值范圍.22.(10分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項.【題目詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【題目點撥】本小題主要考查離散型隨機變量分布列和數(shù)學(xué)期望的計算,屬于中檔題.2、B【解題分析】

依據(jù)線性約束條件畫出可行域,目標(biāo)函數(shù)恒過,再分別討論的正負(fù)進(jìn)一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【題目詳解】作出不等式對應(yīng)的平面區(qū)域,如圖所示:其中,直線過定點,當(dāng)時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當(dāng)時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當(dāng)時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數(shù)的取值范圍為,故選:B.【題目點撥】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結(jié)合思想,屬于中檔題3、D【解題分析】

根據(jù)集合的混合運算,即可容易求得結(jié)果.【題目詳解】,故可得.故選:D.【題目點撥】本題考查集合的混合運算,屬基礎(chǔ)題.4、D【解題分析】

根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【題目詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【題目點撥】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.5、B【解題分析】

設(shè),代入雙曲線方程相減可得到直線的斜率與中點坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率.【題目詳解】,設(shè),則,兩式相減得,∴,.故選:B.【題目點撥】本題考查求雙曲線的離心率,解題方法是點差法,即出現(xiàn)雙曲線的弦中點坐標(biāo)時,可設(shè)弦兩端點坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點坐標(biāo)之間的關(guān)系.6、C【解題分析】

根據(jù)函數(shù)奇偶性可排除AB選項;結(jié)合特殊值,即可排除D選項.【題目詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當(dāng)時,,故選:C.【題目點撥】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.7、D【解題分析】

把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【題目詳解】3本不同的語文書編號為,2本不同的數(shù)學(xué)書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【題目點撥】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.8、A【解題分析】

由及得到、,進(jìn)一步得到,再利用兩角差的正切公式計算即可.【題目詳解】因為,所以,又,所以,,所以.故選:A.【題目點撥】本題考查三角函數(shù)誘導(dǎo)公式、二倍角公式以及兩角差的正切公式的應(yīng)用,考查學(xué)生的基本計算能力,是一道基礎(chǔ)題.9、A【解題分析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【題目詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【題目點撥】本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.10、B【解題分析】

求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【題目詳解】當(dāng)時,,,,又,所以至少小于7,此時,令,得,解得或,結(jié)合圖象,故.故選:B.【題目點撥】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.11、D【解題分析】

通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【題目詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【題目點撥】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.12、C【解題分析】

當(dāng)時,最多一個零點;當(dāng)時,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【題目詳解】當(dāng)時,,得;最多一個零點;當(dāng)時,,,當(dāng),即時,,在,上遞增,最多一個零點.不合題意;當(dāng),即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【題目點撥】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】

由求出,代入,進(jìn)行數(shù)量積的運算即得.【題目詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【題目點撥】本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎(chǔ)題.14、2889【解題分析】

先計算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【題目詳解】當(dāng)時,集合中最小數(shù);當(dāng)時,得到集合中最大的數(shù);故答案為:2889【題目點撥】本題考查了數(shù)列與集合綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.15、【解題分析】

由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【題目詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【題目點撥】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎(chǔ)題.16、【解題分析】

利用導(dǎo)數(shù)的運算法則求出導(dǎo)函數(shù),再利用導(dǎo)數(shù)的幾何意義即可求解.【題目詳解】求導(dǎo)得,所以,所以切線方程為故答案為:【題目點撥】本題考查了基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的運算法則以及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)【解題分析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【題目詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設(shè)O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【題目點撥】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關(guān)鍵是證明線線平行,一般構(gòu)造平行四邊形,則對邊平行,或是構(gòu)造三角形中位線.18、(1);(2)證明見解析;(3)證明見解析.【解題分析】

(1)求得函數(shù)的導(dǎo)函數(shù),由此求得求當(dāng)日產(chǎn)量為噸時的邊際成本.(2)將所要證明不等式轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得不等式成立.(3)利用(2)的結(jié)論,判斷出,由此結(jié)合對數(shù)運算,證得.【題目詳解】(1)因為所以當(dāng)時,(2)要證,只需證,即證,設(shè)則所以在上單調(diào)遞減,所以所以,即;(3)因為又由(2)知,當(dāng)時,所以所以所以【題目點撥】本小題主要考查導(dǎo)數(shù)的計算,考查利用導(dǎo)數(shù)證明不等式,考查放縮法證明數(shù)列不等式,屬于難題.19、(1);(2)分布列見解析,期望為.【解題分析】

(1)甲同學(xué)至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【題目詳解】(1)令“甲同學(xué)至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【題目點撥】本題考查古典概型,考查隨機變量的概率分布列和數(shù)學(xué)期望.解題關(guān)鍵是掌握相互獨立事件同時發(fā)生的概率計算公式.20、(1);(2)證明見詳解.【解題分析】

(1)將不等式的解集用表示出來,結(jié)合題中的解集,求出的值;(2)利用柯西不等式證明.【題目詳解】解:(1),,,因為的解集為,所以,;(2)由(1)由柯西不等式,當(dāng)且僅當(dāng),,,等號成立.【題目點撥】本題考查了絕對值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.21、(1)答案見解析(2)【解題分析】

(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導(dǎo)數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【題目詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設(shè)函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無實數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),,設(shè)(),恒大于零.在上單調(diào)遞增.又,,,∴存在唯一,使,且時,時,①當(dāng)時,恒成立,在單調(diào)遞增,無極值,不合題意.②當(dāng)時,可得當(dāng)時,,當(dāng)時,.所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,所以在處取得極小值,不合題意.③當(dāng)時,可得當(dāng)時,,當(dāng)時,.所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以在處取得極大值,符合題意.此時由得即,綜上可知,實數(shù)a的取值范圍為.【題目點撥】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論