




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年浙江省金華義烏市九年級(jí)數(shù)學(xué)第一學(xué)期期末檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖所示為兩把按不同比例尺進(jìn)行刻度的直尺,每把直尺的刻度都是均勻的,已知兩把直尺在刻度10處是對(duì)齊的,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對(duì)齊,則上面直尺的刻度16與下面直尺對(duì)應(yīng)的刻度是()A.19.4 B.19.5 C.19.6 D.19.72.如圖,雙曲線的一個(gè)分支為()A.① B.② C.③ D.④3.一人乘雪橇沿如圖所示的斜坡(傾斜角為30°)筆直滑下,滑下的距離為24米,則此人下滑的高度為()A.24 B. C.12 D.64.將拋物線向上平移2個(gè)單位長度,再向右平移3個(gè)單位長度后,得到的拋物線解析式為()A. B.C. D.5.如圖直角三角板∠ABO=30°,直角項(xiàng)點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)的y1=圖象上,頂點(diǎn)B在函數(shù)y2=的圖象上,則=()A. B. C. D.6.如圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果下面有三個(gè)推斷:①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5;③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),“正面向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③7.在等腰直角三角形ABC中,AB=AC=4,點(diǎn)O為BC的中點(diǎn),以O(shè)為圓心作⊙O交BC于點(diǎn)M、N,⊙O與AB、AC相切,切點(diǎn)分別為D、E,則⊙O的半徑和∠MND的度數(shù)分別為()A.2,22.5° B.3,30° C.3,22.5° D.2,30°8.為增加綠化面積,某小區(qū)將原來正方形地磚更換為如圖所示的正八邊形植草磚,更換后,圖中陰影部分為植草區(qū)域,設(shè)正八邊形與其內(nèi)部小正方形的邊長都為a,則陰影部分的面積為()A.2a2 B.3a2 C.4a2 D.5a29.如圖,已知直線a∥b∥c,直線m、n與a、b、c分別交于點(diǎn)A、C、E、B、D、F,若AC=8,CE=12,BD=6,則BF的值是()A.14 B.15 C.16 D.1710.如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,則tan∠ABC的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.在△ABC中,∠ABC=90°,已知AB=3,BC=4,點(diǎn)Q是線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作AC的垂線交直線AB于點(diǎn)P,當(dāng)△PQB為等腰三角形時(shí),線段AP的長為_____.12.如圖,的頂點(diǎn)都在方格紙的格點(diǎn)上,則_______.13.已知如圖,是的中位線,點(diǎn)是的中點(diǎn),的延長線交于點(diǎn)A,那么=__________.14.如圖所示的網(wǎng)格是正方形網(wǎng)格,△和△的頂點(diǎn)都是網(wǎng)格線交點(diǎn),那么∠∠_________°.15.若=,則的值是_________.16.如圖,在中,,以點(diǎn)A為圓心,2為半徑的與BC相切于點(diǎn)D,交AB于點(diǎn)E,交AC于點(diǎn)F,點(diǎn)P是上的一點(diǎn),且,則圖中陰影部分的面積為______.17.五角星是我們生活中常見的一種圖形,如圖五角星中,點(diǎn)C,D分別為線段AB的右側(cè)和左側(cè)的黃金分割點(diǎn),已知黃金比為,且AB=2,則圖中五邊形CDEFG的周長為________.18.如圖,AC是⊙O的直徑,弦BD⊥AC于點(diǎn)E,連接BC過點(diǎn)O作OF⊥BC于點(diǎn)F,若BD=12cm,AE=4cm,則OF的長度是___cm.三、解答題(共66分)19.(10分)如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0).(1)求點(diǎn)B的坐標(biāo);(2)已知,C為拋物線與y軸的交點(diǎn).①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值.20.(6分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面的最大距離是5m.(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是,求出你所選方案中的拋物線的表達(dá)式;(2)因?yàn)樯嫌嗡畮煨购椋鎸挾茸優(yōu)?m,求水面上漲的高度.21.(6分)已知二次函數(shù)的頂點(diǎn)坐標(biāo)為,且其圖象經(jīng)過點(diǎn),求此二次函數(shù)的解析式.22.(8分)如圖,△ABC中(1)請(qǐng)你利用無刻度的直尺和圓規(guī)在平面內(nèi)畫出滿足PB2+PC2=BC2的所有點(diǎn)P構(gòu)成的圖形,并在所作圖形上用尺規(guī)確定到邊AC、BC距離相等的點(diǎn)P.(作圖必須保留作圖痕跡)(2)在(1)的條件下,連接BP,若BC=15,AC=14,AB=13,求BP的長.23.(8分)閱讀下面的材料:小明同學(xué)遇到這樣一個(gè)問題,如圖1,AB=AE,∠ABC=∠EAD,AD=mAC,點(diǎn)P在線段BC上,∠ADE=∠ADP+∠ACB,求的值.小明研究發(fā)現(xiàn),作∠BAM=∠AED,交BC于點(diǎn)M,通過構(gòu)造全等三角形,將線段BC轉(zhuǎn)化為用含AD的式子表示出來,從而求得的值(如圖2).(1)小明構(gòu)造的全等三角形是:_________≌________;(2)請(qǐng)你將小明的研究過程補(bǔ)充完整,并求出的值.(3)參考小明思考問題的方法,解決問題:如圖3,若將原題中“AB=AE”改為“AB=kAE”,“點(diǎn)P在線段BC上”改為“點(diǎn)P在線段BC的延長線上”,其它條件不變,若∠ACB=2α,求:的值(結(jié)果請(qǐng)用含α,k,m的式子表示).24.(8分)直線與雙曲線只有一個(gè)交點(diǎn),且與軸、軸分別交于、兩點(diǎn),AD垂直平分,交軸于點(diǎn).(1)求直線、雙曲線的解析式;(2)過點(diǎn)作軸的垂線交雙曲線于點(diǎn),求的面積.25.(10分)從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.如圖1,在中,是的完美分割線,且,則的度數(shù)是如圖2,在中,為角平分線,,求證:為的完美分割線.如圖2,中,是的完美分割線,且是以為底邊的等腰三角形,求完美分割線的長.26.(10分)已知:如圖,在菱形ABCD中,E為BC邊上一點(diǎn),∠AED=∠B.(1)求證:△ABE∽△DEA;(2)若AB=4,求AE?DE的值.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)兩把直尺在刻度10處是對(duì)齊的及上面直尺的刻度11與下面直尺對(duì)應(yīng)的刻度是11.6,得出上面直尺的10個(gè)小刻度,對(duì)應(yīng)下面直尺的16個(gè)小刻度,進(jìn)而判斷出上面直尺的刻度16與下面直尺對(duì)應(yīng)的刻度即可.【詳解】解:由于兩把直尺在刻度10處是對(duì)齊的,觀察圖可知上面直尺的刻度11與下面直尺對(duì)應(yīng)的刻度是11.6,即上面直尺的10個(gè)小刻度,對(duì)應(yīng)下面直尺的16個(gè)小刻度,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對(duì)齊,因此上面直尺的刻度16與下面直尺對(duì)應(yīng)的刻度是18+1.6=19.6,故答案為C【點(diǎn)睛】本題考查了學(xué)生對(duì)圖形的觀察能力,通過圖形得出上面直尺的10個(gè)小刻度,對(duì)應(yīng)下面直尺的16個(gè)小刻度是解題的關(guān)鍵.2、D【解析】∵在中,k=8>0,∴它的兩個(gè)分支分別位于第一、三象限,排除①②;又當(dāng)=2時(shí),=4,排除③;所以應(yīng)該是④.故選D.3、C【分析】由題意運(yùn)用解直角三角形的方法根據(jù)特殊三角函數(shù)進(jìn)行分析求解即可.【詳解】解:因?yàn)樾逼拢▋A斜角為30°),滑下的距離即斜坡長度為24米,所以下滑的高度為米.故選:C.【點(diǎn)睛】本題考查解直角三角形相關(guān),結(jié)合特殊三角函數(shù)進(jìn)行求解是解題的關(guān)鍵,也可利用含30°的直角三角形,其斜邊是30°角所對(duì)直角邊的2倍進(jìn)行分析求解.4、B【分析】根據(jù)“左加右減、上加下減”的原則進(jìn)行解答即可.【詳解】將化為頂點(diǎn)式,得.將拋物線向上平移2個(gè)單位長度,再向右平移3個(gè)單位長度后,得到的拋物線的解析式為,故選B.【點(diǎn)睛】本題考查的是二次函數(shù)的圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.5、D【分析】設(shè)AC=a,則OA=2a,OC=a,根據(jù)直角三角形30°角的性質(zhì)和勾股定理分別計(jì)算點(diǎn)A和B的坐標(biāo),寫出A和B兩點(diǎn)的坐標(biāo),代入解析式求出k1和k2的值,即可求的值.【詳解】設(shè)AB與x軸交點(diǎn)為點(diǎn)C,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,設(shè)AC=a,則OA=2a,OC=a,∴A(a,a),∵A在函數(shù)y1=的圖象上,∴k1=a×a=a2,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函數(shù)y2=的圖象上,∴k2=﹣3a×a=﹣3a2,∴=,故選:D.【點(diǎn)睛】此題考查反比例函數(shù)的性質(zhì),勾股定理,直角三角形的性質(zhì),設(shè)AC=a是解題的關(guān)鍵,由此表示出其他的線段求出k1與k2的值,才能求出結(jié)果.6、B【分析】隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5,據(jù)此進(jìn)行判斷即可.【詳解】解:①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,“正面向上”的概率不一定是0.47,故錯(cuò)誤;②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5,故正確;③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),“正面向上”的頻率不一定是0.1,故錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,明確概率的定義是解題的關(guān)鍵.7、A【解析】解:連接OA,∵AB與⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O為BC的中點(diǎn),∴AO⊥BC,∴OD∥AC,∵O為BC的中點(diǎn),∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=1.5°,故選A.【點(diǎn)睛】本題考查切線的性質(zhì);等腰直角三角形.8、A【分析】正多邊形和圓,等腰直角三角形的性質(zhì),正方形的性質(zhì).圖案中間的陰影部分是正方形,面積是,由于原來地磚更換成正八邊形,四周一個(gè)陰影部分是對(duì)角線為的正方形的一半,它的面積用對(duì)角線積的一半【詳解】解:.故選A.9、B【分析】三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例.直接根據(jù)平行線分線段成比例定理即可得出結(jié)論.【詳解】解:∵a∥b∥c,AC=8,CE=12,BD=6,
∴,即,解得:,故選:B.【點(diǎn)睛】本題考查的是平行線分線段成比例定理,熟知三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例是解答此題的關(guān)鍵.10、D【解析】如圖,∠ABC所在的直角三角形的對(duì)邊AD=3,鄰邊BD=4,所以,tan∠ABC=.故選D.二、填空題(每小題3分,共24分)11、或1.【解析】當(dāng)△PQB為等腰三角形時(shí),有兩種情況,需要分類討論:①當(dāng)點(diǎn)P在線段AB上時(shí),如圖1所示.由三角形相似(△AQP∽△ABC)關(guān)系計(jì)算AP的長;②當(dāng)點(diǎn)P在線段AB的延長線上時(shí),如圖2所示.利用角之間的關(guān)系,證明點(diǎn)B為線段AP的中點(diǎn),從而可以求出AP.【詳解】解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB為鈍角,∴當(dāng)△PQB為等腰三角形時(shí),當(dāng)點(diǎn)P在線段AB上時(shí),如題圖1所示:∵∠QPB為鈍角,∴當(dāng)△PQB為等腰三角形時(shí),只可能是PB=PQ,由(1)可知,△AQP∽△ABC,∴即解得:∴當(dāng)點(diǎn)P在線段AB的延長線上時(shí),如題圖2所示:∵∠QBP為鈍角,∴當(dāng)△PQB為等腰三角形時(shí),只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∴∠AQB=∠A,∴BQ=AB,∴AB=BP,點(diǎn)B為線段AP中點(diǎn),∴AP=2AB=2×3=1.綜上所述,當(dāng)△PQB為等腰三角形時(shí),AP的長為或1.故答案為或1.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題,屬于中考??碱}型.12、【分析】如下圖,先構(gòu)造出直角三角形,然后根據(jù)sinA的定義求解即可.【詳解】如下圖,過點(diǎn)C作AB的垂線,交AB延長線于點(diǎn)D設(shè)網(wǎng)格中每一小格的長度為1則CD=1,AD=3∴在Rt△ACD中,AC=∴sinA=故答案為:.【點(diǎn)睛】本題考查銳角三角函數(shù)的求解,解題關(guān)鍵是構(gòu)造出直角三角形ACD.13、1:1【分析】連結(jié)AP并延長交BC于點(diǎn)F,則S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,則S△CPE:S△ABC=1:1.【詳解】解:連結(jié)AP并延長交BC于點(diǎn)F,∵DE△ABC的中位線,∴E是AC的中點(diǎn),∴S△CPE=S△AEP,∵點(diǎn)P是DE的中點(diǎn),∴S△AEP=S△ADP,∴S△CPE:S△ADE=1:2,∵DE是△ABC的中位線,∴DE∥BC,DE:BC=1:2,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△CPE:S△ABC=1:1.故答案為1:1.【點(diǎn)睛】本題考查三角形的中位線定理,相似三角形的判定和性質(zhì),三角形的面積等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).14、45【分析】先利用平行線的性質(zhì)得出,然后通過勾股定理的逆定理得出為等腰直角三角形,從而可得出答案.【詳解】如圖,連接AD,∵∴∴∵∴∴∴故答案為45【點(diǎn)睛】本題主要考查平行線的性質(zhì)及勾股定理的逆定理,掌握勾股定理的逆定理及平行線的性質(zhì)是解題的關(guān)鍵.15、.【分析】根據(jù)等式的性質(zhì),可用a表示b,根據(jù)分式的性質(zhì)可得答案.【詳解】解:由=得,b=a,∴,故答案為:.【點(diǎn)睛】本題考查了比例的性質(zhì),利用等式的性質(zhì)得出b=a是解題的關(guān)鍵,又利用了分式的性質(zhì).16、【分析】圖中陰影部分的面積=S△ABC-S扇形AEF.由圓周角定理推知∠BAC=90°.【詳解】解:連接AD,在⊙A中,因?yàn)椤螮PF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S陰影=4-故答案為:【點(diǎn)睛】本題考查了切線的性質(zhì)與扇形面積的計(jì)算.求陰影部分的面積時(shí),采用了“分割法”.17、【分析】根據(jù)點(diǎn)C,D分別為線段AB的右側(cè)和左側(cè)的黃金分割點(diǎn),可得AC=BD=AB,BC=AB,再根據(jù)CD=BD-BC求出CD的長度,然后乘以5即可求解.【詳解】∵點(diǎn)C,D分別為線段AB的右側(cè)和左側(cè)的黃金分割點(diǎn),∴AC=BD=AB=,BC=AB,∴CD=BD﹣BC=()﹣()=2﹣4,∴五邊形CDEFG的周長=5(2﹣4)=10﹣1.故答案為:10﹣1.【點(diǎn)睛】本題考查了黃金分割的定義:線段上一點(diǎn)把線段分為較長線段和較短線段,若較長線段是較短線段和整個(gè)線段的比例中項(xiàng),則這個(gè)點(diǎn)叫這條線段的黃金分割點(diǎn).18、.【分析】連接OB,根據(jù)垂徑定理和勾股定理即可求出OB,從而求出EC,再根據(jù)勾股定理即可求出BC,根據(jù)三線合一即可求出BF,最后再利用勾股定理即可求出OF.【詳解】連接OB,∵AC是⊙O的直徑,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得:OB=,∴AC=2OA=2OB=13cm則EC=AC﹣AE=9cm,BC===3cm,∵OF⊥BC,OB=OC∴BF=BC=cm,∴OF===cm,故答案為.【點(diǎn)睛】此題考查的是垂徑定理和勾股定理,掌握垂徑定理和勾股定理的結(jié)合是解決此題的關(guān)鍵.三、解答題(共66分)19、(1)點(diǎn)B的坐標(biāo)為(1,0).(2)①點(diǎn)P的坐標(biāo)為(4,21)或(-4,5).②線段QD長度的最大值為.【分析】(1)由拋物線的對(duì)稱性直接得點(diǎn)B的坐標(biāo).(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點(diǎn)C的坐標(biāo),得到,設(shè)出點(diǎn)P的坐標(biāo),根據(jù)列式求解即可求得點(diǎn)P的坐標(biāo).②用待定系數(shù)法求出直線AC的解析式,由點(diǎn)Q在線段AC上,可設(shè)點(diǎn)Q的坐標(biāo)為(q,-q-3),從而由QD⊥x軸交拋物線于點(diǎn)D,得點(diǎn)D的坐標(biāo)為(q,q2+2q-3),從而線段QD等于兩點(diǎn)縱坐標(biāo)之差,列出函數(shù)關(guān)系式應(yīng)用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點(diǎn)關(guān)于對(duì)稱軸對(duì)稱,且A點(diǎn)的坐標(biāo)為(-3,0),∴點(diǎn)B的坐標(biāo)為(1,0).(2)①∵拋物線,對(duì)稱軸為,經(jīng)過點(diǎn)A(-3,0),∴,解得.∴拋物線的解析式為.∴B點(diǎn)的坐標(biāo)為(0,-3).∴OB=1,OC=3.∴.設(shè)點(diǎn)P的坐標(biāo)為(p,p2+2p-3),則.∵,∴,解得.當(dāng)時(shí);當(dāng)時(shí),,∴點(diǎn)P的坐標(biāo)為(4,21)或(-4,5).②設(shè)直線AC的解析式為,將點(diǎn)A,C的坐標(biāo)代入,得:,解得:.∴直線AC的解析式為.∵點(diǎn)Q在線段AC上,∴設(shè)點(diǎn)Q的坐標(biāo)為(q,-q-3).又∵QD⊥x軸交拋物線于點(diǎn)D,∴點(diǎn)D的坐標(biāo)為(q,q2+2q-3).∴.∵,∴線段QD長度的最大值為.20、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據(jù)拋物線在坐標(biāo)系的位置,可用待定系數(shù)法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結(jié)論.試題解析:解:方案1:(1)點(diǎn)B的坐標(biāo)為(5,0),設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點(diǎn)為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點(diǎn)B的坐標(biāo)為(10,0).設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點(diǎn)為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點(diǎn)B的坐標(biāo)為(5,),由題意可以得到拋物線的頂點(diǎn)為(0,0).設(shè)拋物線的解析式為:,把點(diǎn)B的坐標(biāo)(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.21、【分析】根據(jù)已知頂點(diǎn)坐標(biāo),利用待定系數(shù)法可設(shè)二次函數(shù)的解析式為,代入坐標(biāo)求解即可求得二次函數(shù)的解析式.【詳解】解:因?yàn)槎魏瘮?shù)的頂點(diǎn)坐標(biāo)為,所以可設(shè)二次函數(shù)的解析式為:因?yàn)閳D象經(jīng)過點(diǎn)(1,1),所以,解得,所以,所求二次函數(shù)的解析式為:.【點(diǎn)睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式,一般設(shè)解析式為;當(dāng)已知二次函數(shù)的頂點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為;當(dāng)已知二次函數(shù)圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為.22、(1)見解析;(2)BP=【分析】(1)根據(jù)PB2+PC2=BC2得出P點(diǎn)所構(gòu)成的圓以BC為直徑,根據(jù)垂直平分線畫法畫出O點(diǎn),補(bǔ)全⊙O,再作∠ACB的角平分線與⊙O的交點(diǎn)即是P點(diǎn).(2)設(shè)⊙O與AC的交點(diǎn)為H,AH=x,得到AH、BH,根據(jù)題意求出OP∥AC,即可得出OP⊥BH,BQ=BH,OQ=CH,求出PQ,根據(jù)勾股定理求出BP.【詳解】(1)如圖:(2)由(1)作圖,設(shè)⊙O與AC的交點(diǎn)為H,連接BH,∴∠BHC=90°∵BC=15,AC=14,AB=13設(shè)AH=x∴HC=14-x∴解得:x=5∴AH=5∴BH=12.連接OP,由(1)作圖知CP平分∠BCA∴∠PCA=∠BCP又∵OP=OC∴∠OPC=∠BCP∴∠OPC=∠PCA∴OP∥CA∴OP⊥BH與點(diǎn)Q∴BQ=BH=6又BO=∴OQ=∴PQ=∴BP=.【點(diǎn)睛】此題主要考查了尺規(guī)作圖中垂直平分線,角平分線及圓的畫法和相似比及勾股定理等知識(shí),解題的關(guān)鍵是構(gòu)建直角三角形及找到關(guān)鍵相似三角形.23、(1);(2);(3).【分析】(1)根據(jù)已知條件直接猜想得出結(jié)果;(2)過點(diǎn)作交于點(diǎn),易證,再根據(jù)結(jié)合已知條件得出結(jié)果;(3)過點(diǎn)作交于點(diǎn),過點(diǎn)作,得出,根據(jù)相似三角形的性質(zhì)及已知條件得出,進(jìn)而求解.【詳解】(1)解:;(2)過點(diǎn)作交于點(diǎn).在中和,,,,∴.∴,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 平房建房合同范本
- 科技創(chuàng)新在企業(yè)管理中的實(shí)踐應(yīng)用
- 社區(qū)居民防災(zāi)減災(zāi)意識(shí)的培育與提升
- 裝修全項(xiàng)合同范本
- 個(gè)人住房協(xié)議范本
- 群眾演出合同范本
- 2024年威海乳山市市屬事業(yè)單位綜合類崗位招聘考試真題
- 科技賦能下的城市綠化建設(shè)及發(fā)展路徑研究
- 商業(yè)活動(dòng)組織協(xié)議
- 科技產(chǎn)品開發(fā)中的項(xiàng)目管理學(xué)應(yīng)用分析
- DeepSeek從入門到精通培訓(xùn)課件
- 23G409先張法預(yù)應(yīng)力混凝土管樁
- 三年級(jí)下冊(cè)口算天天100題(A4打印版)
- MSDS物質(zhì)安全技術(shù)資料-洗面水
- 績效管理全套ppt課件(完整版)
- 推進(jìn)優(yōu)質(zhì)護(hù)理-改善護(hù)理服務(wù)-PPT課件
- 動(dòng)畫基礎(chǔ)知識(shí)ppt(完整版)課件
- T∕CNFAGS 3-2021 三聚氰胺單位產(chǎn)品消耗限額
- 中國音樂史PPT講稿課件
- 橋梁模板施工方案最終版
- 幾種藏文輸入法的鍵盤分布圖
評(píng)論
0/150
提交評(píng)論