2023-2024學(xué)年山東省青島市局屬四校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
2023-2024學(xué)年山東省青島市局屬四校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
2023-2024學(xué)年山東省青島市局屬四校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
2023-2024學(xué)年山東省青島市局屬四校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
2023-2024學(xué)年山東省青島市局屬四校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年山東省青島市局屬四校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.關(guān)于反比例函數(shù)y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上2.如圖,半徑為3的⊙O內(nèi)有一點A,OA=,點P在⊙O上,當(dāng)∠OPA最大時,PA的長等于()A. B. C.3 D.23.為了迎接春節(jié),某廠10月份生產(chǎn)春聯(lián)萬幅,計劃在12月份生產(chǎn)春聯(lián)萬幅,設(shè)11、12月份平均每月增長率為根據(jù)題意,可列出方程為()A. B.C. D.4.如圖,的正切值為()A. B. C. D.5.如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達(dá)到最高2.6m,球網(wǎng)與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網(wǎng) B.球會過球網(wǎng)但不會出界C.球會過球網(wǎng)并會出界 D.無法確定6.如圖,桌面上放著1個長方體和1個圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.7.下列事件中,屬于必然事件的是()A.2020年的除夕是晴天 B.太陽從東邊升起C.打開電視正在播放新聞聯(lián)播 D.在一個都是白球的盒子里,摸到紅球8.如圖,中,點、分別在、上,,,則與四邊形的面積的比為()A. B. C. D.9.如圖是由五個相同的小立方塊搭成的幾何體,這個幾何體的俯視圖是()A. B. C. D.10.如圖:已知AB=10,點C、D在線段AB上且AC=DB=2;P是線段CD上的動點,分別以AP、PB為邊在線段AB的同側(cè)作等邊△AEP和等邊△PFB,連接EF,設(shè)EF的中點為G;當(dāng)點P從點C運動到點D時,則點G移動路徑的長是()A.5 B.4 C.3 D.0二、填空題(每小題3分,共24分)11.如圖,⊙O的半徑為6cm,直線AB是⊙O的切線,切點為點B,弦BC∥AO,若∠A=30°,則劣弧的長為cm.12.今年我國生豬價格不斷飆升,某超市的排骨價格由第一季度的每公斤元上漲到第三季度的每公斤元,則該超市的排骨價格平均每個季度的增長率為________.13.拋物線經(jīng)過點,則這條拋物線的對稱軸是直線__________.14.已知拋物線與軸的一個交點坐標(biāo)為,則一元二次方程的根為______________.15.如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是_____________.16.如圖,在矩形中,對角線與相交于點,,垂足為點,,且,則的長為_______.17.如圖,為了測量河寬AB(假設(shè)河的兩岸平行),測得∠ACB=30°,∠ADB=60°,CD=60m,則河寬AB為m(結(jié)果保留根號).18.如圖,在直角△OAB中,∠AOB=30°,將△OAB繞點O逆時針旋轉(zhuǎn)100°得到△OA1B1,則∠A1OB=°.三、解答題(共66分)19.(10分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x+2的圖象與y軸交于A點,與x軸交于B點,⊙P的半徑為,其圓心P在x軸上運動.(1)如圖1,當(dāng)圓心P的坐標(biāo)為(1,0)時,求證:⊙P與直線AB相切;(2)在(1)的條件下,點C為⊙P上在第一象限內(nèi)的一點,過點C作⊙P的切線交直線AB于點D,且∠ADC=120°,求D點的坐標(biāo);(3)如圖2,若⊙P向左運動,圓心P與點B重合,且⊙P與線段AB交于E點,與線段BO相交于F點,G點為弧EF上一點,直接寫出AG+OG的最小值.20.(6分)(8分)向陽村2010年的人均收入為12000元,2012年的人均收入為14520元,求人均收入的年平均增長率.21.(6分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機(jī)抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.22.(8分)永祚寺雙塔,又名凌霄雙塔,是山西省會太原現(xiàn)存古建筑中最高的建筑.位于太原市城區(qū)東南向山腳畔.數(shù)學(xué)活動小組的同學(xué)對其中一塔進(jìn)行了測量.測量方法如下:如圖所示,間接測得該塔底部點到地面上一點的距離為,塔的頂端為點,且,在點處豎直放一根標(biāo)桿,其頂端為,在的延長線上找一點,使三點在同一直線上,測得.(1)方法1,已知標(biāo)桿,求該塔的高度;(2)方法2,測得,已知,求該塔的高度.23.(8分)如圖,拋物線y=a(x+2)(x﹣4)與x軸交于A,B兩點,與y軸交于點C,且∠ACO=∠CBO.(1)求線段OC的長度;(2)若點D在第四象限的拋物線上,連接BD、CD,求△BCD的面積的最大值;(3)若點P在平面內(nèi),當(dāng)以點A、C、B、P為頂點的四邊形是平行四邊形時,直接寫出點P的坐標(biāo).24.(8分)如圖,雨后初睛,李老師在公園散步,看見積水水面上出現(xiàn)階梯上方樹的倒影,于是想利用倒影與物體的對稱性測量這顆樹的高度,他的方法是:測得樹頂?shù)难鼋恰?、測量點A到水面平臺的垂直高度AB、看到倒影頂端的視線與水面交點C到AB的水平距離BC.再測得梯步斜坡的坡角∠2和長度EF,根據(jù)以下數(shù)據(jù)進(jìn)行計算,如圖,AB=2米,BC=1米,EF=4米,∠1=60°,∠2=45°.已知線段ON和線段OD關(guān)于直線OB對稱.(以下結(jié)果保留根號)(1)求梯步的高度MO;(2)求樹高M(jìn)N.25.(10分)先化簡,再求值:,其中﹣2≤a≤2,從中選一個你喜歡的整數(shù)代入求值.26.(10分)已知:關(guān)于x的方程(1)求證:m取任何值時,方程總有實根.(2)若二次函數(shù)的圖像關(guān)于y軸對稱.a、求二次函數(shù)的解析式b、已知一次函數(shù),證明:在實數(shù)范圍內(nèi),對于同一x值,這兩個函數(shù)所對應(yīng)的函數(shù)值均成立.(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值均成立,求二次函數(shù)的解析式.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)反比例函數(shù)y=的圖象上點的坐標(biāo)特征,以及該函數(shù)的圖象的性質(zhì)進(jìn)行分析、解答.【詳解】A.反比例函數(shù)的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內(nèi),y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【點睛】本題主要考查反比例函數(shù)的性質(zhì).注意:反比例函數(shù)的增減性只指在同一象限內(nèi).2、B【解析】如圖所示:∵OA、OP是定值,∴在△OPA中,當(dāng)∠OPA取最大值時,PA取最小值,∴PA⊥OA時,PA取最小值;在直角三角形OPA中,OA=3√,OP=3,∴PA=故選B.點睛:本題考查了垂徑定理、圓周角定理、勾股定理的應(yīng)用.解答此題的關(guān)鍵是找出“PA⊥OA時,∠OPA最大”這一隱含條件.當(dāng)PA⊥OA時,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.3、C【分析】根據(jù)“當(dāng)月的生產(chǎn)量上月的生產(chǎn)量(1增長率)”即可得.【詳解】由題意得:11月份的生產(chǎn)量為萬幅12月份的生產(chǎn)量為萬幅則故選:C.【點睛】本題考查了列一元二次方程,讀懂題意,正確求出12月份的生產(chǎn)量是解題關(guān)鍵.4、A【分析】根據(jù)圓周角定理和正切函數(shù)的定義,即可求解.【詳解】∵∠1與∠2是同弧所對的圓周角,∴∠1=∠2,∴tan∠1=tan∠2=,故選A.【點睛】本題主要考查圓周角定理和正切函數(shù)的定義,把∠1的正切值化為∠2的正切值,是解題的關(guān)鍵.5、C【解析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數(shù)值,再分別與2.43、0比較大小可得.詳解:根據(jù)題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關(guān)系式為當(dāng)x=9時,∴球能過球網(wǎng),當(dāng)x=18時,∴球會出界.故選C.點睛:考查二次函數(shù)的應(yīng)用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據(jù)題意確定范圍.6、C【分析】根據(jù)左視圖是從左面看所得到的圖形進(jìn)行解答即可.【詳解】從左邊看時,圓柱和長方體都是一個矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.7、B【分析】根據(jù)必然事件和隨機(jī)事件的概念進(jìn)行分析.【詳解】A選項:2020年的元旦是晴天,屬于隨機(jī)事件,故不合題意;

B選項:太陽從東邊升起,屬于必然事件,故符合題意;

C選項:打開電視正在播放新聞聯(lián)播,屬于隨機(jī)事件,故不合題意;

D選項:在一個都是白球的盒子里,摸到紅球,屬于不可能事件,故不合題意.故選:B.【點睛】考查了確定事件和不確定事件(隨機(jī)事件),確定事件又分為必然事件和不可能事件;注:事先能肯定它一定會發(fā)生的事件稱為必然事件,事先能肯定它一定不會發(fā)生的事件稱為不可能事件,必然事件和不可能事件都是確定的.在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機(jī)事件.8、C【分析】因為DE∥BC,所以可得△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方解答即可.【詳解】解:∵DE∥BC,

∴△ADE∽△ABC,

∴,

∵AD:DB=1:2,

∴AD:AB=1:3,

∴,

∴△ADE的面積與四邊形DBCE的面積之比=1:8,

故選:C.【點睛】本題考查了相似三角形的判定與性質(zhì),熟記相似三角形面積的比等于相似比的平方是解題的關(guān)鍵.9、A【分析】找到從上面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在俯視圖中.【詳解】從上面看易得上面一層有3個正方形,下面左邊有一個正方形.故選A.【點睛】本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖.10、C【分析】本題通過做輔助線構(gòu)造新三角形,繼而利用等邊三角形性質(zhì)求證四邊形HFPE為平行四邊形,進(jìn)一步結(jié)合點G中點性質(zhì)確定點G運動路徑為△HCD中位線,最后利用中位線性質(zhì)求解.【詳解】延長AE與BF使其相交于點H,連接HC、HD、HP,如下圖所示:由已知得:∠A=∠FPB=60°,∠B=∠EPA=60°,∴AH∥PF,BH∥PE,∴四邊形HFPE為平行四邊形,∴EF與PH互相平分,又∵點G為EF中點,∴點G為PH中點,即在點P運動過程中,點G始終為PH的中點,故點G的運動軌跡為△HCD的中位線MN.∵,,∴,∴,即點G的移動路徑長為1.故選:C.【點睛】本題考查等邊三角形性質(zhì)以及動點問題,此類型題目難點在于輔助線的構(gòu)造,需要多做類似題目積累題感,涉及動點運動軌跡時,其路徑通常是較為特殊的線段或圖形,例如中位線或圓.二、填空題(每小題3分,共24分)11、.【解析】根據(jù)切線的性質(zhì)可得出OB⊥AB,從而求出∠BOA的度數(shù),利用弦BC∥AO,及OB=OC可得出∠BOC的度數(shù),代入弧長公式即可得出答案:∵直線AB是⊙O的切線,∴OB⊥AB(切線的性質(zhì)).又∵∠A=30°,∴∠BOA=60°(直角三角形兩銳角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(兩直線平行,內(nèi)錯角相等).又∵OB=OC,∴△OBC是等邊三角形(等邊三角形的判定).∴∠BOC=60°(等邊三角形的每個內(nèi)角等于60°).又∵⊙O的半徑為6cm,∴劣弧的長=(cm).12、【分析】等量關(guān)系為:第一季度的豬肉價格×(1+增長率)2=第三季度的豬肉價格【詳解】解:設(shè)平均每個季度的增長率為g,∵第一季度為每公斤元,第三季度為每公斤元,,解得.∴平均每個季度的增長率.故答案為:.【點睛】本題考查了一元二次方程的應(yīng)用,是常考查的增長率問題,解題的關(guān)鍵是熟悉有關(guān)增長率問題的有關(guān)等式.13、【分析】根據(jù)拋物線的軸對稱性,即可得到答案.【詳解】∵拋物線經(jīng)過點,且點,點關(guān)于直線x=1對稱,∴這條拋物線的對稱軸是:直線x=1.故答案是:.【點睛】本題主要考查二次函數(shù)的圖象與性質(zhì),掌握拋物線的軸對稱性,是解題的關(guān)鍵.14、,【分析】將x=2,y=1代入拋物線的解析式可得到c=?8a,然后將c=?8a代入方程,最后利用因式分解法求解即可.【詳解】解:將x=2,y=1代入得:2a+2a+c=1.解得:c=?8a.將c=?8a代入方程得:∴.∴a(x?2)(x+2)=1.∴x1=2,x2=-2.【點睛】本題主要考查的是拋物線與x軸的交點,求得a與c的關(guān)系是解題的關(guān)鍵.15、或或1【詳解】如圖所示:①當(dāng)AP=AE=1時,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底邊PE=AE=;②當(dāng)PE=AE=1時,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底邊AP===;③當(dāng)PA=PE時,底邊AE=1;綜上所述:等腰三角形AEP的對邊長為或或1;故答案為或或1.16、【解析】設(shè)DE=x,則OE=2x,根據(jù)矩形的性質(zhì)可得OC=OD=3x,在直角三角形OEC中:可求得CE=x,即可求得x=,即DE的長為.【詳解】∵四邊形ABCD是矩形∴OC=AC=BD=OD設(shè)DE=x,則OE=2x,OC=OD=3x,∵,∴∠OEC=90°在直角三角形OEC中=5∴x=即DE的長為.故答案為:【點睛】本題考查的是矩形的性質(zhì)及勾股定理,掌握矩形的性質(zhì)并靈活的使用勾股定理是解答的關(guān)鍵.17、【詳解】解:∵∠ACB=30°,∠ADB=60°,

∴∠CAD=30°,

∴AD=CD=60m,

在Rt△ABD中,

AB=AD?sin∠ADB=60×=(m).故答案是:.18、70【解析】∵將△OAB繞點O逆時針旋轉(zhuǎn)100°得到△OA1B1,∴∠A1OA=100°.又∵∠AOB=30°,∴∠A1OB=∠A1OA-∠AOB=70°.三、解答題(共66分)19、(1)見解析;(2)D(,+2);(3).【分析】(1)連接PA,先求出點A和點B的坐標(biāo),從而求出OA、OB、OP和AP的長,即可確定點A在圓上,根據(jù)相似三角形的判定定理證出△AOB∽△POA,根據(jù)相似三角形的性質(zhì)和等量代換證出PA⊥AB,即可證出結(jié)論;(2)連接PA,PD,根據(jù)切線長定理可求出∠ADP=∠PDC=∠ADC=60°,利用銳角三角函數(shù)求出AD,設(shè)D(m,m+2),根據(jù)平面直角坐標(biāo)系中任意兩點之間的距離公式求出m的值即可;(3)在BA上取一點J,使得BJ=,連接BG,OJ,JG,根據(jù)相似三角形的判定定理證出△BJG∽△BGA,列出比例式可得GJ=AG,從而得出AG+OG=GJ+OG,設(shè)J點的坐標(biāo)為(n,n+2),根據(jù)平面直角坐標(biāo)系中任意兩點之間的距離公式求出n,從而求出OJ的長,然后根據(jù)兩點之間線段最短可得GJ+OG≥OJ,即可求出結(jié)論.【詳解】(1)證明:如圖1中,連接PA.∵一次函數(shù)y=x+2的圖象與y軸交于A點,與x軸交于B點,∴A(0,2),B(﹣4,0),∴OA=2,OB=4,∵P(1,0),∴OP=1,∴OA2=OB?OP,AP=∴=,點A在圓上∵∠AOB=∠AOP=90°,∴△AOB∽△POA,∴∠OAP=∠ABO,∵∠OAP+∠APO=90°,∴∠ABO+∠APO=90°,∴∠BAP=90°,∴PA⊥AB,∴AB是⊙P的切線.(2)如圖1﹣1中,連接PA,PD.∵DA,DC是⊙P的切線,∠ADC=120°,∴∠ADP=∠PDC=∠ADC=60°,∴∠APD=30°,∵∠PAD=90°∴AD=PA?tan30°=,設(shè)D(m,m+2),∵A(0,2),∴m2+(m+2﹣2)2=,解得m=±,∵點D在第一象限,∴m=,∴D(,+2).(3)在BA上取一點J,使得BJ=,連接BG,OJ,JG.∵OA=2,OB=4,∠AOB=90°,∴AB===2,∵BG=,BJ=,∴BG2=BJ?BA,∴=,∵∠JBG=∠ABG,∴△BJG∽△BGA,∴==,∴GJ=AG,∴AG+OG=GJ+OG,∵BJ=,設(shè)J點的坐標(biāo)為(n,n+2),點B的坐標(biāo)為(-4,0)∴(n+4)2+(n+2)2=,解得:n=-3或-5(點J在點B右側(cè),故舍去)∴J(﹣3,),∴OJ==∵GJ+OG≥OJ,∴AG+OG≥,∴AG+OG的最小值為.故答案為.【點睛】此題考查的是一次函數(shù)與圓的綜合大題,掌握相似三角形的判定及性質(zhì)、切線的判定及性質(zhì)、切線長定理、勾股定理、銳角三角函數(shù)和兩點之間線段最短是解決此題的關(guān)鍵.20、10%.【解析】試題分析:設(shè)這兩年的平均增長率為x,根據(jù)等量關(guān)系“2010年的人均收入×(1+平均增長率)2=2012年人均收入”列方程即可.試題解析:設(shè)這兩年的平均增長率為x,由題意得:12000(1+x)2=14520,解得:x答:這兩年的平均增長率為10%.考點:1.一元二次方程的應(yīng)用;2.增長率問題.21、(1);(2)【解析】(1)直接利用求概率公式計算即可;(2)畫樹狀圖(或列表格)列出所有等可能結(jié)果,根據(jù)概率公式即可解答.【詳解】(1);(2)方法1:根據(jù)題意可畫樹狀圖如下:方法2:根據(jù)題意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(樹狀圖)可知,總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結(jié)果有1種:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B喬治)【點睛】本題考查的是用列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解決問題用到概率公式:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)55m;(2)54.5m【分析】(1)直接利用相似三角形的判定與性質(zhì)得出,進(jìn)而得出答案;(2)根據(jù)銳角三角函數(shù)的定義列出,然后代入求值即可.【詳解】解:則即解得:答:該塔的高度為55m.在中答:該塔的高度為【點睛】本題考查相似三角形的判定和性質(zhì)及解直角三角形的應(yīng)用,熟練掌握相似三角形對應(yīng)邊的比相等和角的正切值的求法是本題的解題關(guān)鍵.23、(1)2;(2)2;(3)(2,2),(6,﹣2)或(﹣6,﹣2)【分析】(1)由拋物線的解析式先求出點A,B的坐標(biāo),再證△AOC∽△COB,利用相似三角形的性質(zhì)可求出CO的長;(2)先求出拋物線的解析式,再設(shè)出點D的坐標(biāo)(m,m2﹣m﹣2),用含m的代數(shù)式表示出△BCD的面積,利用函數(shù)的性質(zhì)求出其最大值;(3)分類討論,分三種情況由平移規(guī)律可輕松求出點P的三個坐標(biāo).【詳解】(1)在拋物線y=a(x+2)(x﹣4)中,當(dāng)y=0時,x1=﹣2,x2=4,∴A(﹣2,0),B(4,0),∴AO=2,BO=4,∵∠ACO=∠CBO,∠AOC=∠COB=90°,∴△AOC∽△COB,∴,即,∴CO=2;(2)由(1)知,CO=2,∴C(0,﹣2)將C(0,﹣2)代入y=a(x+2)(x﹣4),得,a=,∴拋物線解析式為:y=x2﹣x﹣2,如圖1,連接OD,設(shè)D(m,m2﹣m﹣2),則S△BCD=S△OCD+S△OBD﹣S△BOC=×2m+×4(﹣m2+m+2)﹣×4×2=﹣m2+2m=﹣(m﹣2)2+2,根據(jù)二次函數(shù)的圖象及性質(zhì)可知,當(dāng)m=2時,△BCD的面積有最大值2;(3)如圖2﹣1,當(dāng)四邊形ACBP為平行四邊形時,由平移規(guī)律可知,點C向右平移4個單位長度,再向上平移2個單位長度得到點B,所以點A向右平移4個單位長度,再向上平移2個單位長度得到點P,因為A(﹣2,0),所以P1(2,2);同理,在圖2﹣2,圖2﹣3中,可由平移規(guī)律可得P2(6,﹣2),P3(﹣6,﹣2);綜上所述,當(dāng)以點A、C、B、P為頂點的四邊形是平行四邊形時,點P的坐標(biāo)為(2,2),(6,﹣2),P3(﹣6,﹣2).【點睛】本題考查了相似三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)的解析式,三角形的面積及平移規(guī)律等,解題關(guān)鍵是熟知平行四邊形的性質(zhì)及熟練運用平移規(guī)律.24、(1)4米;(2)(14+4)米.【分析】(1)作EH⊥OB于H,由四邊形MOHE是矩形,解Rt求得EH即可;(2)設(shè)ON=OD=m,作AK⊥ON于K,則四邊形AKOB是矩形,,OK=AB=2,想辦法構(gòu)建方程求得m即可.【詳解】(1)如圖,作EH⊥OB于H.則四邊形MOHE是矩形.∴OM=EH,在Rt中,∵∠EHF=90°,EF=4,∠EFH=45°,∴EH=FH=OM=米.(2)設(shè)ON=OD=m.作AK⊥ON于K.則四邊形AKOB是矩形,如圖,AK=BO,OK=AB=2∵AB∥OD,∴,∴,∴OC=,∴,在Rt△AKN中,∵∠1=60°,∴AK,∴,∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【點睛】本題考查了解直角三角形的應(yīng)用,軸對稱的性質(zhì),解題的關(guān)鍵是添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會用參數(shù)解決幾何問題.25、,1【分析】原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,確定出的值,代入計算即可求出值.【詳解】解:原式=,∵﹣2≤a≤2,且a為整數(shù),∴a=0,1,﹣2時沒有意義,a=﹣1或2,當(dāng)a=﹣1時,原式=﹣2;當(dāng)a=2時,原式=1.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.26、(1)證明見解析;(2)a、y1=x2-1;b、證明見解析;(3).【解析】(1)首先此題的方程并沒有明確是一次方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論