2023年江蘇南通啟東市南苑中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第1頁
2023年江蘇南通啟東市南苑中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第2頁
2023年江蘇南通啟東市南苑中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第3頁
2023年江蘇南通啟東市南苑中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第4頁
2023年江蘇南通啟東市南苑中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年江蘇南通啟東市南苑中學(xué)數(shù)學(xué)九年級第一學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在反比例函數(shù)y=的圖象上有兩點A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2則k的取值范圍是()A.k≥ B.k> C.k<﹣ D.k<2.下列式子中表示是的反比例函數(shù)的是()A. B. C. D.3.若,則一次函數(shù)與反比例函數(shù)在同一坐標(biāo)系數(shù)中的大致圖象是()A. B.C. D.4.下列關(guān)系式中,是的反比例函數(shù)的是()A. B. C. D.5.在三角形紙片ABC中,AB=8,BC=4,AC=6,按下列方法沿虛線剪下,能使陰影部分的三角形與△ABC相似的是()A. B. C. D.6.拋擲一枚均勻的骰子,所得的點數(shù)能被3整除的概率為()A. B. C. D.7.如圖,為的直徑,,為上的兩點.若,,則的度數(shù)是()A. B. C. D.8.如圖5,一棵大樹在一次強(qiáng)臺風(fēng)中于離地面5米處折斷倒下,倒下部分與地面成30°夾角,這棵大樹在折斷前的高度為()A.10米 B.15米 C.25米 D.30米9.如圖,在△ABC中,AB=18,BC=15,cosB=,DE∥AB,EF⊥AB,若=,則BE長為()A.7.5 B.9 C.10 D.510.x=1是關(guān)于x的一元二次方程x2+ax﹣2b=0的解,則2a﹣4b的值為()A.﹣2 B.﹣1 C.1 D.2二、填空題(每小題3分,共24分)11.一個質(zhì)地均勻的小正方體,六個面分別標(biāo)有數(shù)字1,1,2,4,5,5,隨機(jī)擲一次小正方體,朝上一面的數(shù)字是奇數(shù)的概率是__________.12.關(guān)于x的方程的解是,(a,m,b均為常數(shù),),則關(guān)于x的方程的解是________.13.如圖,在平面直角坐標(biāo)系中,將邊長為1的正方形繞點逆時針旋轉(zhuǎn)45°后得到正方形,繼續(xù)旋轉(zhuǎn)至2020次得到正方形,那點的坐標(biāo)是__________.14.投擲一枚質(zhì)地均勻的骰子兩次,第一次出現(xiàn)的點數(shù)記為a,第二次出現(xiàn)的點數(shù)記為b.那么方程有解的概率是__________。15.如圖,在⊙O內(nèi)有折線DABC,點B,C在⊙O上,DA過圓心O,其中OA=8,AB=12,∠A=∠B=60°,則BC=_____.16.如圖是一條水鋪設(shè)的直徑為2米的通水管道橫截面,其水面寬1.6米,則這條管道中此時水深為______米.17.足球從地面踢出后,在空中飛行時離地面的高度與運動時間的關(guān)系可近似地表示為,則該足球在空中飛行的時間為__________.18.如圖,若被擊打的小球飛行高度(單位:)與飛行時間(單位:)之間具有的關(guān)系為,則小球從飛出到落地所用的時間為_____.三、解答題(共66分)19.(10分)如圖,在□中,是上一點,且,與的延長線交點.(1)求證:△∽△;(2)若△的面積為1,求□的面積.20.(6分)數(shù)學(xué)概念若點在的內(nèi)部,且、和中有兩個角相等,則稱是的“等角點”,特別地,若這三個角都相等,則稱是的“強(qiáng)等角點”.理解概念(1)若點是的等角點,且,則的度數(shù)是.(2)已知點在的外部,且與點在的異側(cè),并滿足,作的外接圓,連接,交圓于點.當(dāng)?shù)倪厺M足下面的條件時,求證:是的等角點.(要求:只選擇其中一道題進(jìn)行證明?。偃鐖D①,②如圖②,深入思考(3)如圖③,在中,、、均小于,用直尺和圓規(guī)作它的強(qiáng)等角點.(不寫作法,保留作圖痕跡)(4)下列關(guān)于“等角點”、“強(qiáng)等角點”的說法:①直角三角形的內(nèi)心是它的等角點;②等腰三角形的內(nèi)心和外心都是它的等角點;③正三角形的中心是它的強(qiáng)等角點;④若一個三角形存在強(qiáng)等角點,則該點到三角形三個頂點的距離相等;⑤若一個三角形存在強(qiáng)等角點,則該點是三角形內(nèi)部到三個頂點距離之和最小的點,其中正確的有.(填序號)21.(6分)綜合與探究:三角形旋轉(zhuǎn)中的數(shù)學(xué)問題.實驗與操作:

Rt△ABC中,∠ABC=90°,∠ACB=30°.將Rt△ABC繞點A按順時針方向旋轉(zhuǎn)得到Rt△AB′C′(點B′,C′分別是點B,C的對應(yīng)點).設(shè)旋轉(zhuǎn)角為α(0°<α<180°),旋轉(zhuǎn)過程中直線B′B和線段CC′相交于點D.猜想與證明:(1)如圖1,當(dāng)AC′經(jīng)過點B時,探究下列問題:①此時,旋轉(zhuǎn)角α的度數(shù)為°;②判斷此時四邊形AB′DC的形狀,并證明你的猜想;(2)如圖2,當(dāng)旋轉(zhuǎn)角α=90°時,求證:CD=C′D;(3)如圖3,當(dāng)旋轉(zhuǎn)角α在0°<α<180°范圍內(nèi)時,連接AD,直接寫出線段AD與C之間的位置關(guān)系(不必證明).22.(8分)已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,點P在BD上移動,當(dāng)以P,C,D為頂點的三角形與△ABP相似時,求PB的長?23.(8分)如圖,已知正方形,點在延長線上,點在延長線上,連接、、交于點,若,求證:.24.(8分)畫出如圖所示的幾何體的三種視圖.25.(10分)如圖,已知,直線垂直平分交于,與邊交于,連接,過點作平行于交于點,連.(1)求證:;(2)求證:四邊形是菱形;(3)若,求菱形的面積.26.(10分)如圖,是的直徑,軸,交于點.(1)若點,求點的坐標(biāo);(2)若為線段的中點,求證:直線是的切線.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】利用反比例函數(shù)的性質(zhì)得到反比例函數(shù)圖象分布在第一、三象限,于是得到1﹣3k>0,然后解不等式即可.【詳解】∵x1<0<x2,y1<y2,∴反比例函數(shù)圖象分布在第一、三象限,∴1﹣3k>0,∴k<.故選:D.【點睛】此題考查反比例函數(shù)的性質(zhì),根據(jù)點的橫縱坐標(biāo)的關(guān)系即可確定函數(shù)圖象所在的象限,由此得到k的取值范圍.2、D【解析】根據(jù)反比例函數(shù)的定義逐項分析即可.【詳解】A.是一次函數(shù),故不符合題意;B.二次函數(shù),故不符合題意;C.不是反比例函數(shù),故不符合題意;D.是反比例函數(shù),符合題意;故選D.【點睛】本題考查了反比例函數(shù)的定義,一般地,形如(k為常數(shù),k≠0)的函數(shù)叫做反比例函數(shù).3、C【分析】根據(jù)ab>0,可得a、b同號,結(jié)合一次函數(shù)及反比例函數(shù)的特點進(jìn)行判斷即可.【詳解】解:.A.根據(jù)一次函數(shù)可判斷a>0,b<0,即ab<0,故不符合題意,

B.根據(jù)反比例函數(shù)可判斷ab<0,故不符合題意,

C.根據(jù)一次函數(shù)可判斷a<0,b<0,即ab>0,根據(jù)反比例函數(shù)可判斷ab>0,故符合題意,

D.根據(jù)反比例函數(shù)可判斷ab<0,故不符合題意.

故選:C.【點睛】本題考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)是解決問題的關(guān)鍵.4、C【解析】根據(jù)反比例函數(shù)的定義逐一判斷即可.【詳解】解:A、是正比例函數(shù),故A錯誤;

B、是正比例函數(shù),故B錯誤;

C、是反比例函數(shù),故C正確;

D、是二次函數(shù),故D錯誤;

故選:C.【點睛】本題考查了反比例函數(shù)的定義,形如y=(k≠0)的函數(shù)是反比例函數(shù).正確理解反比例函數(shù)解析式是解題的關(guān)鍵.5、D【解析】解:三角形紙片ABC中,AB=8,BC=4,AC=1.A.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC不相似,故此選項錯誤;B.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC不相似,故此選項錯誤;C.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC不相似,故此選項錯誤;D.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC相似,故此選項正確;故選D.點睛:此題主要考查了相似三角形的判定,正確利用相似三角形兩邊比值相等且夾角相等的兩三角形相似是解題關(guān)鍵.6、B【解析】拋擲一枚骰子有1、2、3、4、5、6種可能,其中所得的點數(shù)能被3整除的有3、6這兩種,∴所得的點數(shù)能被3整除的概率為,故選B.【點睛】本題考查了簡單的概率計算,熟記概率的計算公式是解題的關(guān)鍵.7、B【分析】先連接OC,根據(jù)三條邊都相等可證明△OCB是等邊三角形,再利用圓周角定理即可求出角度.【詳解】解:如圖,連接OC.∵AB=2,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°.故選:B.【點睛】本題考查圓周角定理,等邊三角形的判定及性質(zhì)等知識,作半徑是圓中常用到的輔助線需熟練掌握.8、B【分析】如圖,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根據(jù)題意找到CA=5米,由此即可求出AB,也就求出了大樹在折斷前的高度.【詳解】解:如圖,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以這棵大樹在折斷前的高度為15米.故選B.【點睛】本題主要利用定理--在直角三角形中30°的角所對的直角邊等于斜邊的一半,解題關(guān)鍵是善于觀察題目的信息,利用信息解決問題.9、C【分析】先設(shè)DE=x,然后根據(jù)已知條件分別用x表示AF、BF、BE的長,由DE∥AB可知,進(jìn)而可求出x的值和BE的長.【詳解】解:設(shè)DE=x,則AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cosB==,∴BE=(18﹣2x),∵DE∥AB,∴,∴∴x=6,∴BE=(18﹣12)=10,故選:C.【點睛】本題主要考查了三角形的綜合應(yīng)用,根據(jù)平行線得到相關(guān)線段比例是解題關(guān)鍵.10、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整體代入的方法計算2a-4b的值即可.【詳解】將x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故選:A.【點睛】本題考查了一元二次方程的解的定義.一元二次方程的解就是能夠使方程左右兩邊相等的未知數(shù)的值.二、填空題(每小題3分,共24分)11、【分析】直接利用概率求法進(jìn)而得出答案.【詳解】∵一個質(zhì)地均勻的小正方體,六個面分別標(biāo)有數(shù)字1,1,2,4,5,5,∴隨機(jī)擲一次小正方體,朝上一面的數(shù)字是奇數(shù)的概率是:.故答案為:.【點睛】此題主要考查了概率公式,正確掌握概率公式是解題關(guān)鍵.12、x1=-12,x2=1【分析】把后面一個方程中的x+3看作一個整體,相當(dāng)于前面方程中的x來求解.【詳解】解:∵關(guān)于x的方程的解是,(a,m,b均為常數(shù),a≠0),∴方程變形為,即此方程中x+3=-9或x+3=11,解得x1=-12,x2=1,故方程的解為x1=-12,x2=1.故答案為x1=-12,x2=1.【點睛】此題主要考查了方程解的含義.注意觀察兩個方程的特點,運用整體思想進(jìn)行簡便計算.13、(-1,-1)【分析】連接OB,根據(jù)圖形可知,點B在以點O為圓心、、OB為半徑的圓上運用,將正方形OABC繞點O逆時針依次旋轉(zhuǎn)45°,可得點B的對應(yīng)點坐標(biāo),根據(jù)圖形及對應(yīng)點的坐標(biāo)發(fā)現(xiàn)是8次一個循環(huán),進(jìn)而得出結(jié)論.【詳解】解:如圖,∵四邊形OABC是正方形,且OA=1,∴B(1,1),連接OB,由勾股定理可得,由旋轉(zhuǎn)的性質(zhì)得:將正方形OABC繞點O逆時針依次旋轉(zhuǎn)45°,得:,∴,,,,…,可發(fā)現(xiàn)8次一循環(huán),∵,∴點的坐標(biāo)為,故答案為.【點睛】本題考查了幾何圖形的規(guī)律探究,根據(jù)計算得出“8次一個循環(huán)”是解題的關(guān)鍵.14、【分析】畫樹狀圖展示所有36種等可能的結(jié)果數(shù),再找出使,即的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫樹狀圖為:共有36種等可能的結(jié)果數(shù),其中使,即的有19種,

方程有解的概率是,故答案為:.【點睛】本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件的概率.15、1【分析】作OE⊥BC于E,連接OB,根據(jù)∠A、∠B的度數(shù)易證得△ABD是等邊三角形,由此可求出OD、BD的長,設(shè)垂足為E,在Rt△ODE中,根據(jù)OD的長及∠ODE的度數(shù)易求得DE的長,進(jìn)而可求出BE的長,由垂徑定理知BC=2BE即可得出答案.【詳解】作OE⊥BC于E,連接OB.∵∠A=∠B=60°,∴∠ADB=60°,∴△ADB為等邊三角形,∴BD=AD=AB=12,∵OA=8,∴OD=4,又∵∠ADB=60°,∴DE=OD=2,∴BE=12﹣2=10,由垂徑定理得BC=2BE=1故答案為:1.【點睛】本題考查了圓中的弦長計算,熟練掌握垂徑定理,作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.16、【詳解】解:作出弧AB的中點D,連接OD,交AB于點C.則OD⊥AB.AC=AB=0.8m.在直角△OAC中,OC===0.6m.則水深CD=OD-OC=1-0.6=0.4m.【點睛】此題涉及圓中求半徑的問題,此類在圓中涉及弦長、半徑、圓心角的計算的問題,常把半弦長,圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過直角三角形予以求解,常見輔助線是過圓心作弦的垂線.17、9.8【分析】求當(dāng)t=0時函數(shù)值,即與x軸的兩個交點,兩個交點之間的距離即足球在空中飛行的時間.【詳解】解:當(dāng)t=0時,解得:∴足球在空中的飛行時間為9.8s故答案為:9.8【點睛】本題考查二次函數(shù)的實際應(yīng)用,利用數(shù)形結(jié)合思想球解題,求拋物線與x軸的交點是本題的解題關(guān)鍵18、1.【分析】根據(jù)關(guān)系式,令h=0即可求得t的值為飛行的時間.【詳解】解:依題意,令得:∴得:解得:(舍去)或∴即小球從飛出到落地所用的時間為故答案為1.【點睛】本題考查了二次函數(shù)的性質(zhì)在實際生活中的應(yīng)用.此題為數(shù)學(xué)建模題,關(guān)鍵在于讀懂小球從飛出到落地即飛行的高度為0時的情形,借助二次函數(shù)解決實際問題.此題較為簡單.三、解答題(共66分)19、(1)證明見解析;(2)24【分析】(1)利用平行線的性質(zhì)得到∠ABF=∠E,即可證得結(jié)論;(2)根據(jù)平行線的性質(zhì)證明△ABF∽△DEF,即可求出S△ABF=9,再根據(jù)AD=BC=4DF,求出S△CBE=16,即可求出答案.【詳解】證明:(1)在□ABCD中,∠A=∠C,AB∥CD,∴∠ABF=∠E,∴△ABF∽△CEB;(2)在□ABCD中,AD∥BC,∴△DEF∽△CEB,又∵△ABF∽△CEB∴△ABF∽△DEF,∵AF=3DF,△DEF的面積為1,∴S△ABF=9,∵AD=BC=4DF,∴S△CBE=16,∴□ABCD的面積=9+15=24.【點睛】此題考查平行四邊形的性質(zhì),相似三角形的判定及性質(zhì).20、(1)100、130或1;(2)選擇①或②,理由見解析;(3)見解析;(4)③⑤【分析】(1)根據(jù)“等角點”的定義,分類討論即可;(2)①根據(jù)在同圓中,弧和弦的關(guān)系和同弧所對的圓周角相等即可證明;②弧和弦的關(guān)系和圓的內(nèi)接四邊形的性質(zhì)即可得出結(jié)論;(3)根據(jù)垂直平分線的性質(zhì)、等邊三角形的性質(zhì)、弧和弦的關(guān)系和同弧所對的圓周角相等作圖即可;(4)根據(jù)“等角點”和“強(qiáng)等角點”的定義,逐一分析判斷即可.【詳解】(1)(i)若=時,∴==100°(ii)若時,∴(360°-)=130°;(iii)若=時,360°--=1°,綜上所述:=100°、130°或1°故答案為:100、130或1.(2)選擇①:連接∵∴∴∵,∴∴是的等角點.選擇②連接∵∴∴∵四邊形是圓的內(nèi)接四邊形,∴∵∴∴是的等角點(3)作BC的中垂線MN,以C為圓心,BC的長為半徑作弧交MN與點D,連接BD,根據(jù)垂直平分線的性質(zhì)和作圖方法可得:BD=CD=BC∴△BCD為等邊三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分線交MN于點O以O(shè)為圓心OB為半徑作圓,交AD于點Q,圓O即為△BCD的外接圓∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如圖③,點即為所求.(4)③⑤.①如下圖所示,在RtABC中,∠ABC=90°,O為△ABC的內(nèi)心假設(shè)∠BAC=60°,∠ACB=30°∵點O是△ABC的內(nèi)心∴∠BAO=∠CAO=∠BAC=30°,∠ABO=∠CBO=∠ABC=45°,∠ACO=∠BCO=∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°顯然∠AOC≠∠AOB≠∠BOC,故①錯誤;②對于鈍角等腰三角形,它的外心在三角形的外部,不符合等角點的定義,故②錯誤;③正三角形的每個中心角都為:360°÷3=120°,滿足強(qiáng)等角點的定義,所以正三角形的中心是它的強(qiáng)等角點,故③正確;④由(3)可知,點Q為△ABC的強(qiáng)等角,但Q不在BC的中垂線上,故QB≠Q(mào)C,故④錯誤;⑤由(3)可知,當(dāng)?shù)娜齻€內(nèi)角都小于時,必存在強(qiáng)等角點.如圖④,在三個內(nèi)角都小于的內(nèi)任取一點,連接、、,將繞點逆時針旋轉(zhuǎn)到,連接,∵由旋轉(zhuǎn)得,,∴是等邊三角形.∴∴∵、是定點,∴當(dāng)、、、四點共線時,最小,即最?。?dāng)為的強(qiáng)等角點時,,此時便能保證、、、四點共線,進(jìn)而使最?。蚀鸢笧椋孩邰荩军c睛】此題考查的是新定義類問題、圓的基本性質(zhì)、圓周角定理、圓的內(nèi)接多邊形綜合大題,掌握“等角點”和“強(qiáng)等角點”的定義、圓的基本性質(zhì)、圓周角定理、圓的內(nèi)接多邊形中心角公式和分類討論的數(shù)學(xué)思想是解決此題的關(guān)鍵.21、(1)①60;②四邊形AB′DC是平行四邊形,證明見解析.(2)證明見解析;(3)【分析】(1)①根據(jù)矩形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定方法解題;②根據(jù)兩組對邊分別平行的四邊形是平行四邊形解題;(2)過點作的垂線,交于點E,由旋轉(zhuǎn)的性質(zhì)得到對應(yīng)邊、對應(yīng)角相等,進(jìn)而證明△CDB≌△,即可解題;(3)先證明,再由相似三角形的性質(zhì)解題,進(jìn)而證明即可證明.【詳解】解:(1)①60;②四邊形AB′DC是平行四邊形.證明:∵∠ABC=90°,∠ACB=30°,∴∠CAB=90°-30°=60°.∵Rt△AB′C′是由Rt△ABC繞點A順時針旋轉(zhuǎn)得到的,∴∠C′AB′=∠CAB=60°,,.與都是等邊三角形.∴∠ACC′=∠AB′B=60°.∵∠CAB′=∠CAB+∠C′AB′=120°,∴∠ACC′+∠CAB′=180°,∠CAB′+∠ABB′=180°.∴AB′//CD,AC//B′D.∴四邊形AB′DC是平行四邊形.(2)證明:過點作的垂線,交于點E,∴∠B′C′E=90°.∵Rt△AB′C′是由Rt△ABC繞點A順時針旋轉(zhuǎn)90°得到的,∴∠CAC′=∠BAB′=∠B′C′E=90°,,.∴∠AB=∠AB=45°,BC∥AB′∥C′E∵∠AC=∠ABC=90°,∴∠B=∠CBE=45°.∴∠=90°-45°=45°=∠B.∴.在△CBD和△ED中,∴△CDB≌△DE.∴CD=D.(3)AD⊥C,理由如下:設(shè)AC與D交于點O,連接AD,∴∠ADC′=180°-∠DAO-∠AC′C=180°-∠OB′C′-∠AB′B,,

【點睛】本題考查幾何綜合,其中涉及三角形的旋轉(zhuǎn)、等邊三角形的判定與性質(zhì)、平行線的判定、平行四邊形的判定、全等三角形的判定等知識,綜合性較強(qiáng),是常見考點,掌握相關(guān)知識、學(xué)會作適當(dāng)輔助線是解題關(guān)鍵.22、(1)BP=2或BP=12;(2)當(dāng)BP的值為2,12或5.1時,兩三角形相似.【解析】試題分析:分△ABP∽△PCD和△ABP∽△DCP兩種情況,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.解:(1)當(dāng)△ABP∽△PCD時,=,則=,解得BP=2或BP=12;(2)當(dāng)△ABP∽△DCP時,=,則=,解得BP=5.1.綜合以上可知,當(dāng)BP的值為2,12

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論