2023年四川省德陽地區(qū)數(shù)學(xué)九上期末經(jīng)典試題含解析_第1頁
2023年四川省德陽地區(qū)數(shù)學(xué)九上期末經(jīng)典試題含解析_第2頁
2023年四川省德陽地區(qū)數(shù)學(xué)九上期末經(jīng)典試題含解析_第3頁
2023年四川省德陽地區(qū)數(shù)學(xué)九上期末經(jīng)典試題含解析_第4頁
2023年四川省德陽地區(qū)數(shù)學(xué)九上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年四川省德陽地區(qū)數(shù)學(xué)九上期末經(jīng)典試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,A,B,C,D四個點均在⊙O上,∠AOB=40°,弦BC的長等于半徑,則∠ADC的度數(shù)等于()A.50° B.49° C.48° D.47°2.下列方程是一元二次方程的是()A. B. C. D.3.下列圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4.如圖,∠1=∠2A.∠C=∠D B.∠B=∠AED5.二次函數(shù)的圖象如圖所示,若點A和B在此函數(shù)圖象上,則與的大小關(guān)系是()A. B. C. D.無法確定6.二次函數(shù),當(dāng)時,則()A. B. C. D.7.如圖,在中,弦AB=12,半徑與點P,且P為的OC中點,則AC的長是()A. B.6 C.8 D.8.如圖是一根空心方管,則它的主視圖是()A. B. C. D.9.反比例函數(shù)的圖像經(jīng)過點,,則下列關(guān)系正確的是()A. B. C. D.不能確定10.今年元旦期間,某種女服裝連續(xù)兩次降價處理,由每件200元調(diào)至72元,設(shè)平均每次的降價百分率為,則得方程()A. B.C. D.二、填空題(每小題3分,共24分)11.?dāng)?shù)據(jù)﹣3,6,0,5的極差為_____.12.已知y是x的二次函數(shù),y與x的部分對應(yīng)值如下表:x...-1012...y...0343...該二次函數(shù)圖象向左平移______個單位,圖象經(jīng)過原點.13.如圖,在△ABC中,E,F(xiàn)分別為AB,AC的中點,則△AEF與△ABC的面積之比為.14.如圖,已知AB,CD是☉O的直徑,弧AE=弧AC,∠AOE=32°,那么∠COE的度數(shù)為________度.15.如圖,一條河的兩岸有一段是平行的,在河的南岸邊每隔5米有一棵樹,在北岸邊每隔50米有一根電線桿.小麗站在離南岸邊15米的P點處看北岸,發(fā)現(xiàn)北岸相鄰的兩根電線桿恰好被南岸的兩棵樹遮住,并且在這兩棵樹之間還有三棵樹,則河寬為________米.16.將二次函數(shù)化成的形式為__________.17.已知,.且,設(shè),則的取值范圍是______.18.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點E的坐標(biāo)為_________________________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)(x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設(shè)直線EF的解析式為y2=k2x+b.(1)求反比例函數(shù)和直線EF的解析式;(溫馨提示:平面上有任意兩點M(x1,y1)、N(x2,y2),它們連線的中點P的坐標(biāo)為())(2)求△OEF的面積;(3)請結(jié)合圖象直接寫出不等式k2x-b﹣>0的解集.20.(6分)現(xiàn)有A,B,C,D四張不透明的卡片,除正面上的圖案不同外,其他均相同.將這4張卡片背面向上洗勻后放在桌面上.(Ⅰ)從中隨機取出1張卡片,卡片上的圖案是中心對稱圖形的概率是_____;(Ⅱ)若從中隨機抽取一張卡片,不放回,再從剩下的3張中隨機抽取1張卡片,請用畫樹形圖或列表的方法,求兩次抽取的卡片都是軸對稱圖形的概率.21.(6分)如圖,請在下列四個論斷中選出兩個作為條件,推出四邊形ABCD是平行四邊形,并予以證明(寫出一種即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四邊形ABCD中,____________.求證:四邊形ABCD是平行四邊形.22.(8分)某圖書館2015年年底有圖書10萬冊,預(yù)計2017年年底有圖書14.4萬冊.求這兩年圖書冊數(shù)的年平均增長率.23.(8分)如圖,點B、D、E在一條直線上,BE交AC于點F,,且∠BAD=∠CAE.(1)求證:△ABC∽△ADE;(2)求證:△AEF∽△BFC.24.(8分)某食品商店將甲、乙、丙3種糖果的質(zhì)量按配置成一種什錦糖果,已知甲、乙、丙三種糖果的單價分別為16元/、20元/、27元/.若將這種什錦糖果的單價定為這三種糖果單價的算術(shù)平均數(shù),你認(rèn)為合理嗎?如果合理,請說明理由;如果不合理,請求出該什錦糖果合理的單價.25.(10分)如圖,是半圓的直徑,是半圓上的一點,切半圓于點,于為點,與半圓交于點.(1)求證:平分;(2)若,求圓的直徑.26.(10分)不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球若干個(小球除顏色外其余都相同),其中黃球2個,藍(lán)球1個.若從中隨機摸出一個球,摸到藍(lán)球的概率是.(1)求口袋里紅球的個數(shù);(2)第一次隨機摸出一個球(不放回),第二次再隨機摸出一個球,請用列表或畫樹狀圖的方法,求兩次摸到的球恰是一黃一藍(lán)的概率.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】連接OC,根據(jù)等邊三角形的性質(zhì)得到∠BOC=60°,得到∠AOC=100°,根據(jù)圓周角定理解答.【詳解】連接OC,由題意得,OB=OC=BC,∴△OBC是等邊三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圓周角定理得,∠ADC=12∠AOC=50°故選:A.【點睛】本題考查的是圓周角定理,等邊三角形的判定和性質(zhì),掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.2、C【解析】試題解析:A、,沒有給出a的取值,所以A選項錯誤;B、不含有二次項,所以B選項錯誤;C、是一元二次方程,所以C選項正確;D、不是整式方程,所以D選項錯誤.故選C.考點:一元二次方程的定義.3、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形,故此選項正確.故選:D.【點睛】本題考查軸對稱圖形與中心對稱圖形的概念,理解掌握兩個定義是解答關(guān)鍵.4、D【解析】求出∠DAE=∠BAC,根據(jù)選項條件判定三角形相似后,可得對應(yīng)邊成比例,再把比例式化為等積式后即可判斷.【詳解】解:∵∠1=∠2,

∴∠1+∠BAE=∠2+∠BAE,

∴∠DAE=∠BAC,

A、∵∠DAE=∠BAC,∠D=∠C,

∴△ADE∽△ACB,∴AEAB∴AB·故本選項錯誤;

B、∵∠B=∠AED,∠DAE=∠BAC,

∴△ADE∽△ACB∴AEAB∴AB·故本選項錯誤;

C、∵AEAB=ADAC,∠∴△ADE∽△ACB,∴AEAB∴AB·故本選項錯誤;

D、∵∠DAE=∠BAC,AEAC=ADAB,

∴△A∴ADAB∴AB·故本選項正確;

故選:D.【點睛】本題考查了相似三角形的判定和性質(zhì)的應(yīng)用,比例式化等積式,特別要注意確定好對應(yīng)邊,不要找錯了.5、A【分析】由圖象可知拋物線的對稱軸為直線,所以設(shè)點A關(guān)于對稱軸對稱的點為點C,如圖,此時點C坐標(biāo)為(-4,y1),點B與點C都在對稱軸左邊,從而利用二次函數(shù)的增減性判斷即可.【詳解】解:∵拋物線的對稱軸為直線,∴設(shè)點A關(guān)于對稱軸對稱的點為點C,∴點C坐標(biāo)為(-4,y1),此時點A、B、C的大體位置如圖所示,∵當(dāng)時,y隨著x的增大而減小,,∴.故選:A.【點睛】本題主要考查了二次函數(shù)的圖象與性質(zhì),屬于基本題型,熟練掌握二次函數(shù)的性質(zhì)是解題關(guān)鍵.6、D【分析】因為=,對稱軸x=1,函數(shù)開口向下,分別求出x=-1和x=1時的函數(shù)值即可;【詳解】∵=,∴當(dāng)x=1時,y有最大值5;當(dāng)x=-1時,y==1;當(dāng)x=2時,y==4;∴當(dāng)時,;故選D.【點睛】本題主要考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.7、D【分析】根據(jù)垂徑定理求出AP,連結(jié)OA根據(jù)勾股定理構(gòu)造方程可求出OA、OP,再求出PC,最后根據(jù)勾股定理即可求出AC.【詳解】解:如圖,連接OA,∵AB=12,OC⊥AB,OC過圓心O,∴AP=BP=AB=6,∵P為的OC中點,設(shè)⊙O的半徑為2R,即OA=OC=2R,則PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+解得:AC=故選:D.【點睛】本題考查了垂徑定理和勾股定理,能根據(jù)垂徑定理求出AP的長是解此題的關(guān)鍵.8、B【分析】根據(jù)從正面看得到的圖形是主視圖,可得答案.【詳解】解:從正面看是:大正方形里有一個小正方形,∴主視圖為:

故選:B.【點睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖,注意看不到的線畫虛線.9、B【分析】根據(jù)點的橫坐標(biāo)結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出y1、y2的值,比較后即可得出結(jié)論.【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點,,

∴y1=3,y2=,

∵3>,

∴.

故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,根據(jù)點的橫坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征求出點的縱坐標(biāo)是解題的關(guān)鍵.10、C【分析】設(shè)調(diào)價百分率為x,根據(jù)售價從原來每件200元經(jīng)兩次調(diào)價后調(diào)至每件72元,可列方程.【詳解】解:設(shè)調(diào)價百分率為x,則:故選:C.【點睛】本題考查一元二次方程的應(yīng)用,關(guān)鍵設(shè)出兩次降價的百分率,根據(jù)調(diào)價前后的價格列方程求解.二、填空題(每小題3分,共24分)11、1【分析】根據(jù)極差的定義直接得出結(jié)論.【詳解】∵數(shù)據(jù)﹣3,6,0,5的最大值為6,最小值為﹣3,∴數(shù)據(jù)﹣3,6,0,5的極差為6﹣(﹣3)=1,故答案為1.【點睛】此題考查了極差,極差反映了一組數(shù)據(jù)變化范圍的大小,求極差的方法是用一組數(shù)據(jù)中的最大值減去最小值.12、2【分析】利用表格中的對稱性得:拋物線與x軸另一個交點為(2,0),可得結(jié)論.【詳解】解:由表格得:二次函數(shù)的對稱軸是直線x==1.∵拋物線與x軸的一個交點為(-1,0),∴拋物線與x軸另一個交點為(2,0),∴該二次函數(shù)圖象向左平移2個單位,圖象經(jīng)過原點;或該二次函數(shù)圖象向右平移1個單位,圖象經(jīng)過原點.故填為2.【點睛】本題考查了二次函數(shù)圖象與幾何變換-平移,根據(jù)平移的原則:左加右減進行平移;也可以利用數(shù)形結(jié)合的思想畫圖解決.13、3:3.【解析】試題解析:∵E、F分別為AB、AC的中點,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴.考點:3.相似三角形的判定與性質(zhì);3.三角形中位線定理..14、64【分析】根據(jù)等弧所對的圓心角相等求得∠AOE=∠COA=32°,所以∠COE=∠AOE+∠COA=64°.【詳解】解:∵弧AE=弧AC,(已知)

∴∠AOE=∠COA(等弧所對的圓心角相等);

又∠AOE=32°,

∴∠COA=32°,

∴∠COE=∠AOE+∠COA=64°.

故答案是:64°.【點睛】本題考查圓心角、弧、弦的關(guān)系.在同圓或等圓中,兩個圓心角、兩條弧、兩條弦三組量之間,如果有一組量相等,那么,它們所對應(yīng)的其它量也相等.15、22.5【解析】根據(jù)題意畫出圖形,構(gòu)造出△PCD∽△PAB,利用相似三角形的性質(zhì)解題.解:過P作PF⊥AB,交CD于E,交AB于F,如圖所示設(shè)河寬為x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴,∴,依題意CD=20米,AB=50米,∴,解得:x=22.5(米).答:河的寬度為22.5米.16、【分析】利用配方法整理即可得解.【詳解】解:,所以.故答案為.【點睛】本題考查了二次函數(shù)的解析式有三種形式:(1)一般式:為常數(shù));(2)頂點式:;(3)交點式(與軸):.17、【分析】先根據(jù)已知得出n=1-m,將其代入y中,得出y關(guān)于m的二次函數(shù)即可得出y的范圍【詳解】解:∵∴n=1-m,∴∵,∴,∴當(dāng)m=時,y有最小值,當(dāng)m=0時,y=1當(dāng)m=1時,y=1∴故答案為:【點睛】本題考查了二次函數(shù)的最值問題,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵18、(,2).【詳解】解:如圖,當(dāng)點B與點D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(biāo)(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.三、解答題(共66分)19、(1)(2)(3)x<-6或-1.5<x<1【分析】(1)根據(jù)點A是OC的中點,可得A(3,2),可得反比例函數(shù)解析式為y1=,根據(jù)E(,4),F(xiàn)(6,1),運用待定系數(shù)法即可得到直線EF的解析式為y=-x+5;(2)過點E作EG⊥OB于G,根據(jù)點E,F(xiàn)都在反比例函數(shù)y1=的圖象上,可得S△EOG=S△OBF,再根據(jù)S△EOF=S梯形EFBG進行計算即可;(3)根據(jù)點E,F(xiàn)關(guān)于原點對稱的點的坐標(biāo)分別為(-1.5,-4),(-6,-1),可得不等式k2x-b->1的解集為:x<-6或-1.5<x<1.【詳解】(1)∵D(1,4),B(6,1),∴C(6,4),∵點A是OC的中點,∴A(3,2),把A(3,2)代入反比例函數(shù)y1=,可得k1=6,∴反比例函數(shù)解析式為y1=,把x=6代入y1=,可得y=1,則F(6,1),把y=4代入y1=,可得x=,則E(,4),把E(,4),F(xiàn)(6,1)代入y2=k2x+b,可得,解得,∴直線EF的解析式為y=-x+5;(2)如圖,過點E作EG⊥OB于G,∵點E,F(xiàn)都在反比例函數(shù)y1=的圖象上,∴S△EOG=S△OBF,∴S△EOF=S梯形EFBG=(1+4)×=;(3)由圖象可得,點E,F(xiàn)關(guān)于原點對稱的點的坐標(biāo)分別為(-1.5,-4),(-6,-1),∴由圖象可得,不等式k2x-b->1的解集為:x<-6或-1.5<x<1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題以及矩形性質(zhì)的運用,求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解.解題時注意運用數(shù)形結(jié)合思想得到不等式的解集.20、(Ⅰ);(Ⅱ)【分析】(Ⅰ)根據(jù)題意,直接利用概率公式求解可得;(Ⅱ)畫樹狀圖列出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】解:(Ⅰ)從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為,故答案為:;(Ⅱ)畫樹狀圖如下:由樹狀圖知,共有12種等可能結(jié)果,其中兩次所抽取的卡片恰好都是軸對稱圖形的有6種結(jié)果,則兩次所抽取的卡片恰好都是軸對稱圖形的概率為=.【點睛】本題考查列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,求出概率.21、已知:①③(或①④或②④或③④),證明見解析.【解析】試題分析:根據(jù)平行四邊形的判定方法就可以組合出不同的結(jié)論,然后即可證明.其中解法一是證明兩組對角相等的四邊形是平行四邊形;解法二是證明兩組對邊平行的四邊形是平行四邊形;解法三是證明一組對邊平行且相等的四邊形是平行四邊形;解法四是證明兩組對角相等的四邊形是平行四邊形.試題解析:已知:①③,①④,②④,③④均可,其余均不可以.解法一:已知:在四邊形ABCD中,①AD∥BC,③∠A=∠C,求證:四邊形ABCD是平行四邊形.證明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四邊形ABCD是平行四邊形.解法二:已知:在四邊形ABCD中,①AD∥BC,④∠B+∠C=180°,求證:四邊形ABCD是平行四邊形.證明:∵∠B+∠C=180°,∴AB∥CD,又∵AD∥BC,∴四邊形ABCD是平行四邊形;解法三:已知:在四邊形ABCD中,②AB=CD,④∠B+∠C=180°,求證:四邊形ABCD是平行四邊形.證明:∵∠B+∠C=180°,∴AB∥CD,又∵AB=CD,∴四邊形ABCD是平行四邊形;解法四:已知:在四邊形ABCD中,③∠A=∠C,④∠B+∠C=180°,求證:四邊形ABCD是平行四邊形.證明:∵∠B+∠C=180°,∴AB∥CD,∴∠A+∠D=180°,又∵∠A=∠C,∴∠B=∠D,∴四邊形ABCD是平行四邊形.考點:平行四邊形的判定.22、20%【解析】試題分析:經(jīng)過兩次增長,求年平均增長率的問題,應(yīng)該明確原來的基數(shù),增長后的結(jié)果.設(shè)這兩年的年平均增長率為x,則經(jīng)過兩次增長以后圖書館有書10(1+x)2萬冊,即可列方程求解.試題解析:設(shè)這兩年圖書冊數(shù)的年平均增長率為x.

根據(jù)題意,得10(1+x)2=14.4

解得x1=0.2=20%,x2=-2.2

(不符合題意,舍去).

答:這兩年圖書冊數(shù)的年平均增長率為20%.23、(1)見解析;(2)見解析【分析】(1)由已知先證明∠BAC=∠DAE,繼而根據(jù)兩邊對應(yīng)成比例且夾角相等即可得結(jié)論;(2)根據(jù)相似三角形的性質(zhì)定理得到∠C=∠E,結(jié)合圖形,證明即可.【詳解】證明:如圖,(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E,在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BFC.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.24、這樣定價不合理,理由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論