4.4.2對數(shù)函數(shù)的圖象和性質(zhì)課件2-高一上學(xué)期數(shù)學(xué)人教A版_第1頁
4.4.2對數(shù)函數(shù)的圖象和性質(zhì)課件2-高一上學(xué)期數(shù)學(xué)人教A版_第2頁
4.4.2對數(shù)函數(shù)的圖象和性質(zhì)課件2-高一上學(xué)期數(shù)學(xué)人教A版_第3頁
4.4.2對數(shù)函數(shù)的圖象和性質(zhì)課件2-高一上學(xué)期數(shù)學(xué)人教A版_第4頁
4.4.2對數(shù)函數(shù)的圖象和性質(zhì)課件2-高一上學(xué)期數(shù)學(xué)人教A版_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

4.4對數(shù)函數(shù)4.4.2對數(shù)函數(shù)的圖象和性質(zhì)2

反函數(shù)在同一個平面直角坐標(biāo)系中畫出y=2x與y=log2x的圖象,觀察圖象有什么特點?思考

?

Oyxy=2xy=log2x11Oyx11

PART

2反函數(shù)指數(shù)函數(shù)y=ax與對數(shù)函數(shù)y=logax互為反函數(shù),它們的定義域和值域互換,互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性,圖象關(guān)于直線y=x對稱.利用單調(diào)性解對數(shù)不等式

解下列關(guān)于x的不等式:

所以原不等式的解集為{x|0<x<2}.綜上所述,當(dāng)a>1時,原不等式的解集為{x|x>4};(2)loga(2x-5)>loga(x-1);對數(shù)不等式的三種考查類型及解法(1)形如logax>logab的不等式,借助y=logax的單調(diào)性求解,如果a的取值不確定,需分a>1與0<a<1兩種情況進行討論.(2)形如logax>b的不等式,應(yīng)將b化為以a為底數(shù)的對數(shù)式的形式(b=logaab),再借助y=logax的單調(diào)性求解.(3)形如logf(x)a>logg(x)a(f(x),g(x)>0且不等于1,a>0)的不等式,可利用換底公式化為同底的對數(shù)進行求解,或利用函數(shù)圖象求解.與對數(shù)函數(shù)有關(guān)的函數(shù)的奇偶性A與對數(shù)函數(shù)有關(guān)的函數(shù)的單調(diào)性與對數(shù)函數(shù)有關(guān)的綜合性問題例2

已知函數(shù)f(x)=log2(x+1)-2.(1)若f(x)>0,求x的取值范圍;函數(shù)f(x)=log2(x+1)-2,∵f(x)>0,即log2(x+1)-2>0,∴l(xiāng)og2(x+1)>2,∴x+1>4,∴x>3.∴x的取值范圍是(3,+∞).(2)若x∈(-1,3],求f(x)的值域.∵x∈(-1,3],∴x+1∈(0,4],∴l(xiāng)og2(x+1)∈(-∞,2],∴l(xiāng)og

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論