2023年邢臺市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第1頁
2023年邢臺市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第2頁
2023年邢臺市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第3頁
2023年邢臺市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第4頁
2023年邢臺市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年邢臺市重點中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,四邊形ABCD中,∠A=90°,AB=8,AD=6,點M,N分別為線段BC,AB上的動點(含端點,但點M不與點B重合),點E,F(xiàn)分別為DM,MN的中點,則EF長度的最大值為()A.8 B.6 C.4 D.52.如圖所示的幾何體是由六個小正方體組合而成的,它的俯視圖是()A. B. C. D.3.方程x2﹣2x+3=0的根的情況是()A.有兩個相等的實數(shù)根 B.只有一個實數(shù)根C.沒有實數(shù)根 D.有兩個不相等的實數(shù)根4.如圖,與是位似圖形,相似比為,已知,則的長()A. B. C. D.5.有5個完全相同的卡片,正面分別寫有1,2,3,4,5這5個數(shù)字,現(xiàn)把卡片背面朝上,從中隨機抽取一個卡片,其數(shù)字是奇數(shù)的概率為()A. B. C. D.6.拋物線y=x2﹣2x+2的頂點坐標(biāo)為()A.(1,1) B.(﹣1,1) C.(1,3) D.(﹣1,3)7.如圖,AB是⊙O的直徑,點C,D在⊙O上.若∠ABD=55°,則∠BCD的度數(shù)為()A.25° B.30° C.35° D.40°8.在Rt△ABC中,∠C=900,∠B=2∠A,則cosB等于()A. B. C. D.9.如圖,AB是⊙O的弦,∠BAC=30°,BC=2,則⊙O的直徑等于()A.2 B.3 C.4 D.610.如圖,中,點,分別是邊,上的點,,點是邊上的一點,連接交線段于點,且,,,則S四邊形BCED()A. B. C. D.11.如圖,在□ABCD中,∠B=60°,AB=4,對角線AC⊥AB,則□ABCD的面積為A.6 B.12 C.12 D.1612.設(shè)m是方程的一個較大的根,n是方程的一個較小的根,則的值是()A. B. C.1 D.2二、填空題(每題4分,共24分)13.函數(shù)中,自變量的取值范圍是_____.14.已知:a,b在數(shù)軸上的位置如圖所示,化簡代數(shù)式:=_____.15.圓錐的母線長為5cm,高為4cm,則該圓錐的全面積為_______cm2.16.b和2的比例中項是4,則b=__.17.兩個少年在綠茵場上游戲.小紅從點A出發(fā)沿線段AB運動到點B,小蘭從點C出發(fā),以相同的速度沿⊙O逆時針運動一周回到點C,兩人的運動路線如圖1所示,其中AC=DB.兩人同時開始運動,直到都停止運動時游戲結(jié)束,其間他們與點C的距離y與時間x(單位:秒)的對應(yīng)關(guān)系如圖2所示.則下列說法正確的有________.(填序號)①小紅的運動路程比小蘭的長;②兩人分別在1.09秒和7.49秒的時刻相遇;③當(dāng)小紅運動到點D的時候,小蘭已經(jīng)經(jīng)過了點D;④在4.84秒時,兩人的距離正好等于⊙O的半徑.18.一個不透明的袋中裝有若干個紅球,為了估計袋中紅球的個數(shù),小文在袋中放入3個白球(每個球除顏色外其余都與紅球相同).搖勻后每次隨機從袋中摸出一個球,記下顏色后放回袋中,通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.7左右,則袋中紅球約有_____個.三、解答題(共78分)19.(8分)將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖1擺放,點D為AB邊的中點,DE交AC于點P,DF經(jīng)過點C,且BC=2.(1)求證:△ADC∽△APD;(2)求△APD的面積;(3)如圖2,將△DEF繞點D順時針方向旋轉(zhuǎn)角α(0°<α<60°),此時的等腰直角三角尺記為△DE′F′,DE′交AC于點M,DF′交BC于點N,試判斷PMCN的值是否隨著α的變化而變化?如果不變,請求出PM20.(8分)如圖,在坐標(biāo)系中,拋物線經(jīng)過點和,與軸交于點.直線.拋物線的解析式為.直線的解析式為;若直線與拋物線只有一個公共點,求直線的解析式;設(shè)拋物線的頂點關(guān)于軸的對稱點為,點是拋物線對稱軸上一動點,如果直線與拋物線在軸上方的部分形成了封閉圖形(記為圖形).請結(jié)合函數(shù)的圖象,直接寫出點的縱坐標(biāo)的取值范圍.21.(8分)如圖,已知△ABC,∠B=90゜,AB=3,BC=6,動點P、Q同時從點B出發(fā),動點P沿BA以1個單位長度/秒的速度向點A移動,動點Q沿BC以2個單位長度/秒的速度向點C移動,運動時間為t秒.連接PQ,將△QBP繞點Q順時針旋轉(zhuǎn)90°得到△,設(shè)△與△ABC重合部分面積是S.(1)求證:PQ∥AC;(2)求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍.22.(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,1),B(1,n)兩點.根據(jù)以往所學(xué)的函數(shù)知識以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個問題).23.(10分)校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的長(結(jié)果保留根號);(2)已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)24.(10分)一個不透明的布袋中裝有4個只有顏色不同的球,其中1個黃球、1個藍(lán)球、2個紅球.(1)任意摸出1個球,記下顏色后不放回,再任意摸出1個球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);(2)現(xiàn)再將n個黃球放入布袋,攪勻后,使任意摸出1個球是黃球的概率為,求n的值.25.(12分)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,拋物線與x軸的另一交點為B.(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;(2)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).26.將矩形ABCD按如圖所示的方式折疊,BE,EG,F(xiàn)G為折痕,若頂點A,C,D都落在點O處,且點B,O,G在同一條直線上,同時點E,O,F(xiàn)在另一條直線上,若AD=4,則四邊形BEGF的面積為_____.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)三角形中位線定理可知EF=DN,求出DN的最大值即可.【詳解】解:如圖,連結(jié)DN,

∵DE=EM,F(xiàn)N=FM,

∴EF=DN,

當(dāng)點N與點B重合時,DN的值最大即EF最大,

在Rt△ABD中,∵∠A=90°,AD=6,AB=8,

∴,

∴EF的最大值=BD=1.

故選:D.【點睛】本題考查了三角形中位線定理、勾股定理等知識,解題的關(guān)鍵是中位線定理的靈活應(yīng)用,學(xué)會轉(zhuǎn)化的思想,屬于中考常考題型.2、D【分析】根據(jù)從上邊看得到的圖形是俯視圖,可得答案.【詳解】解:從上邊看第一列是一個小正方形,第二列是兩個小正方形,第三列是兩個小正方形,

故選:D.【點睛】本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.3、C【解析】試題分析:利用根的判別式進(jìn)行判斷.解:∵∴此方程無實數(shù)根.故選C.4、B【分析】根據(jù)位似變換的定義、相似三角形的性質(zhì)列式計算即可.【詳解】∵△ABC與△DEF是位似圖形,相似比為2:3,

∴△ABC∽△DEF,

∴,即,

解得,DE=故選:B.【點睛】本題考查的是位似變換,掌握位似是相似的特殊形式,位似比等于相似比是解題的關(guān)鍵.5、D【分析】讓正面的數(shù)字是奇數(shù)的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】解:∵從寫有數(shù)字1,2,3,4,5這5張卡片中抽取一張,其中正面數(shù)字是奇數(shù)的有1、3、5這3種結(jié)果,∴正面的數(shù)字是奇數(shù)的概率為;故選D.【點睛】此題主要考查了概率公式的應(yīng)用,明確概率的意義是解答的關(guān)鍵,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.6、A【解析】分析:把函數(shù)解析式整理成頂點式形式,然后寫出頂點坐標(biāo)即可.詳解:∵y=x2-2x+2=(x-1)2+1,∴頂點坐標(biāo)為(1,1).故選A.點睛:本題考查了二次函數(shù)的性質(zhì),熟練掌握利用頂點式解析式寫出頂點坐標(biāo)的方法是解題的關(guān)鍵.7、C【詳解】解:連接AD,∵AB是⊙O的直徑,∴∠ADB=90°.∵∠ABD=55°,∴∠BAD=90°﹣55°=35°,∴∠BCD=∠BAD=35°.故選C.【點睛】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.8、B【詳解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故選B【點睛】本題考查三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.9、C【分析】如圖,作直徑BD,連接CD,根據(jù)圓周角定理得到∠D=∠BAC=30°,∠BCD=90°,根據(jù)直角三角形的性質(zhì)解答.【詳解】如圖,作直徑BD,連接CD,∵∠BDC和∠BAC是所對的圓周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直徑,∠BCD是BD所對的圓周角,∴∠BCD=90°,∴BD=2BC=4,故選:C.【點睛】本題考查圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;半圓(或直徑)所對的圓周角是直角;90°圓周角所對的弦是直徑;熟練掌握圓周角定理是解題關(guān)鍵.10、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形對應(yīng)成比例可得,得到HC=5,再根據(jù)相似三角形的面積比等于相似比的平方可得,S△ABC=40.5,再減去△ADE的面積即可得到四邊形BCED的面積.【詳解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四邊形BCED=S△ABC-S△ADE=40.5-18=22.5故答案選:B.【點睛】本題考查相似三角形的性質(zhì)和判定.11、D【分析】利用三角函數(shù)的定義求出AC,再求出△ABC的面積,故可得到□ABCD的面積.【詳解】∵∠B=60°,AB=4,AC⊥AB,∴AC=ABtan60°=4,∴S△ABC=AB×AC=×4×4=8,∴□ABCD的面積=2S△ABC=16故選D.【點睛】此題主要考查三角函數(shù)的應(yīng)用,解題的關(guān)鍵是熟知正切的定義及平行四邊形的性質(zhì).12、C【分析】先解一元二次方程求出m,n即可得出答案.【詳解】解方程得或,則,解方程,得或,則,,故選:C.【點睛】本題考查了解一元二次方程,掌握方程解法是解題關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)被開方式是非負(fù)數(shù)列式求解即可.【詳解】依題意,得,解得:,故答案為.【點睛】本題考查了函數(shù)自變量的取值范圍,函數(shù)有意義時字母的取值范圍一般從幾個方面考慮:①當(dāng)函數(shù)解析式是整式時,字母可取全體實數(shù);②當(dāng)函數(shù)解析式是分式時,考慮分式的分母不能為0;③當(dāng)函數(shù)解析式是二次根式時,被開方數(shù)為非負(fù)數(shù).④對于實際問題中的函數(shù)關(guān)系式,自變量的取值除必須使表達(dá)式有意義外,還要保證實際問題有意義.14、1.【分析】根據(jù)二次根式的性質(zhì)=|a|開平方,再結(jié)合數(shù)軸確定a﹣1,a+b,1﹣b的正負(fù)性,然后去絕對值,最后合并同類項即可.【詳解】原式=|a﹣1|﹣|a+b|+|1﹣b|=1﹣a﹣(﹣a﹣b)+(1﹣b)=1﹣a+a+b+1﹣b=1,故答案為:1.【點睛】此題主要考查了二次根式的化簡和性質(zhì),正確把握絕對值的性質(zhì)是解答此題的關(guān)鍵.15、14π【分析】利用圓錐的母線長和圓錐的高求得圓錐的底面半徑,表面積=底面積+側(cè)面積=π×底面半徑1+底面周長×母線長÷1.【詳解】解:∵圓錐母線長為5cm,圓錐的高為4cm,∴底面圓的半徑為3,則底面周長=6π,∴側(cè)面面積=×6π×5=15π;∴底面積為=9π,∴全面積為:15π+9π=14π.故答案為14π.【點睛】本題利用了圓的周長公式和扇形面積公式求解.16、1.【分析】根據(jù)題意,b與2的比例中項為4,也就是b:4=4:2,然后再進(jìn)一步解答即可.【詳解】根據(jù)題意可得:B:4=4:2,解得b=1,故答案為:1.【點睛】本題主要考查了比例線段,解題本題的關(guān)鍵是理解兩個數(shù)的比例中項,然后列出比例式進(jìn)一步解答.17、④【分析】利用圖象信息一一判斷即可解決問題.【詳解】解:①由圖可知,速度相同的情況下,小紅比小蘭提前停下來,時間花的短,故小紅的運動路程比小蘭的短,故本選項不符合題意;

②兩人分別在1.09秒和7.49秒的時刻與點C距離相等,故本選項不符合題意;

③當(dāng)小紅運動到點D的時候,小蘭也在點D,故本選項不符合題意;

④當(dāng)小紅運動到點O的時候,兩人的距離正好等于⊙O的半徑,此時t==4.84,故本選項正確;

故答案為:④.【點睛】本題考查動點問題函數(shù)圖象、解題的關(guān)鍵是讀懂圖象信息,屬于中考常考題型.18、1【分析】根據(jù)口袋中有3個白球,利用小球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等求出即可.【詳解】解:∵通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率是0.1,口袋中有3個白球,∵假設(shè)有x個紅球,∴,解得:x=1,經(jīng)檢驗x=1是方程的根,∴口袋中有紅球約有1個.故答案為:1.【點睛】此題主要考查了用樣本估計總體,根據(jù)已知得出小球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等是解決問題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)33;(3)不會隨著α【解析】(1)先判斷出△BCD是等邊三角形,進(jìn)而求出∠ADP=∠ACD,即可得出結(jié)論;

(2)求出PH,最后用三角形的面積公式即可得出結(jié)論;

(3)只要證明△DPM和△DCN相似,再根據(jù)相似三角形對應(yīng)邊成比例即可證明.【詳解】(1)證明:∵△ABC是直角三角形,點D是AB的中點,∴AD=BD=CD,∵在△BCD中,BC=BD且∠B=60°,∴△BCD是等邊三角形,∴∠BCD=∠BDC=60°,∴∠ACD=90°-∠BCD=30°,∠ADE=180°-∠BDC-∠EDF=30°,在△ADC與△APD中,∠A=∠A,∠ACD=∠ADP,∴△ADC∽△APD.(2)由(1)已得△BCD是等邊三角形,∴BD=BC=AD=2,過點P作PH⊥AD于點H,∵∠ADP=30°=90°-∠B=∠A,∴AH=DH=1,tanA=PHAH∴PH=33∴△APD的面積=12AD·PH=(3)PMCN的值不會隨著α的變化而變化∵∠MPD=∠A+∠ADE=30°+30°=60°,∴∠MPD=∠BCD=60°,在△MPD與△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,∴△MPD∽△NCD,∴PMCN由(1)知AD=CD,∴PMCN由(2)可知PD=2AH,∴PD=23∴PMCN∴PMCN的值不會隨著α的變化而變化【點睛】屬于相似三角形的綜合題,考查相似三角形的判定與性質(zhì),銳角三角函數(shù),三角形的面積等,綜合性比較強,對學(xué)生綜合能力要求較高.20、(1);(2);(3).【分析】(1)將兩點坐標(biāo)直接代入可求出b,c的值,進(jìn)而求出拋物線解析式為,得出C的坐標(biāo),從而求出直線AC的解析式為y=x+3.(2)設(shè)直線的解析式為,直線與拋物線只有一個公共點,方程有兩個相等的實數(shù)根,再利用根的判別式即可求出b的值.(3)拋物線的頂點坐標(biāo)為(-1,4),關(guān)于y軸的對稱點為M(1,4),可確定M在直線AC上,分直線不在直線下方和直線在直線下方兩種情況分析即可得解.【詳解】解:將A,B坐標(biāo)代入解析式得出b=-2,c=3,∴拋物線的解析式為:當(dāng)x=0時,y=3,C的坐標(biāo)為(0,3),根據(jù)A,C坐標(biāo)可求出直線AC的解析式為y=x+3.直線,設(shè)直線的解析式為.直線與拋物線只有一個公共點,方程有兩個相等的實數(shù)根,,解得.直線的解析式為..解析:如圖所示,,拋物線的頂點坐標(biāo)為.拋物線的頂點關(guān)于軸的對稱點為.當(dāng)時,,點在直線上.①當(dāng)直線不在直線下方時,直線能與拋物線在第二象限的部分形成封閉圖形.當(dāng)時,.當(dāng)直線與直線重合,即動點落在直線上時,點的坐標(biāo)為.隨著點沿拋物線對稱軸向上運動,圖形逐漸變小,直至直線與軸平行時,圖形消失,此時點與拋物線的頂點重合,動點的坐標(biāo)是,②當(dāng)直線在直線下方時,直線不能與拋物線的任何部分形成封閉圖形.綜上,點的縱坐標(biāo)的取值范圍是.【點睛】本題是一道二次函數(shù)與一次函數(shù)相結(jié)合的綜合性題目,根據(jù)點坐標(biāo)求出拋物線與直線的解析式是解題的關(guān)鍵.考查了學(xué)生對數(shù)據(jù)的綜合分析能力,數(shù)形結(jié)合的能力,是一道很好的題目.21、(1)見解析;(2)【分析】(1)由題意可得出,繼而可證明△BPQ∽△BAC,從而證明結(jié)論;(2)由題意得出QP`⊥AC,分三種情況利用相似三角形的判定及性質(zhì)討論計算.【詳解】解:(1)∵BP=t,BQ=2t,AB=3,BC=6∴∵∠B=∠B∴△BPQ∽△BAC∴∠BPQ=∠A∴PQ∥AC(2)∵BP=tBQ=2t∴P`Q=∵AB=3BC=6∴AC=3∵PQ∥AC∴QP`⊥AC當(dāng)0<t≤時,S=t2當(dāng)<t≤1時:設(shè)QP`交AC于點MP`B`交AC于點N∴∠QMC=∠B=90°∴△QMC∽△ABC∴∴∴QM=∵P`Q=t∴P`M=又∵∠P`=∠BPQ=∠A∴△P`NM∽△ACB∴∴MN=2P`M∴S△P`MN=P`M·MN=P`M2=∴當(dāng)1<t≤3時設(shè)QB`交AC于點H∵∠HQM=∠PQB∴△HMQ∽△PBQ∴∴MH=MQ∴綜合上所述:【點睛】本題是一道關(guān)于相似的綜合題目,難度較大,涉及的知識點有相似三角形的判定及性質(zhì)、勾股定理、三角形面積公式、旋轉(zhuǎn)的性質(zhì)等,需要有數(shù)形結(jié)合的能力以及較強的計算能力.22、見解析【分析】根據(jù)反比例函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及三角形的面積公式即可求解.【詳解】解:①求反比例函數(shù)的解析式設(shè)反比例函數(shù)解析式為將A(-2,1)代入得k=-2所以反比例函數(shù)的解析式為②求B點的坐標(biāo).(或n的值)將x=1代入得y=-2所以B(1,-2)③求一次函數(shù)解析式設(shè)一次函數(shù)解析式為y=kx+b將A(-2,1)B(1,-2)代入得解得所以一次函數(shù)的解析式為y=-x-1④利用圖像直接寫出當(dāng)x為何值時一次函數(shù)值等于反比例函數(shù)值.x=-2或x=1時⑤利用圖像直接寫出一次函數(shù)值大于反比例函數(shù)值時,x的取值范圍.x<-2或0<x<1⑥利用圖像直接寫出一次函數(shù)值小于反比例函數(shù)值時,x的取值范圍.-2<x<0或x>1⑦求C點的坐標(biāo).將y=0代入y=-x-1得x=-1所以C點的坐標(biāo)為(-1,0)⑧求D點的坐標(biāo).將x=0代入y=-x-1得y=-1所以D點的坐標(biāo)為(0,-1)⑨求AOB的面積=+=+=【點睛】此題主要考查反比例函數(shù)與一次函數(shù)綜合,解題的關(guān)鍵是熟知反比例函數(shù)的性質(zhì).23、(1);(2)此校車在AB路段超速,理由見解析.【分析】(1)結(jié)合三角函數(shù)的計算公式,列出等式,分別計算AD和BD的長度,計算結(jié)果,即可.(2)在第一問的基礎(chǔ)上,結(jié)合時間關(guān)系,計算速度,判斷,即可.【詳解】解:(1)由題意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽車從A到B用時1.5秒,所以速度為16÷1.5≈18.1(米/秒),因為18.1(米/秒)=65.2千米/時>45千米/時,所以此校車在AB路段超速.【點睛】考查三角函數(shù)計算公式,考查速度計算方法,關(guān)鍵利用正切值計算方法,計算結(jié)果,難度中等.24、(1);(2)1.【解析】(1)先利用樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩次摸出的球恰好都是紅球的所占的結(jié)果數(shù),然后根據(jù)概率公式求解;(2)根據(jù)概率公式得到,然后利用比例性質(zhì)得,求解即可.【詳解】解:(1)畫樹狀圖為:共有12種等可能的結(jié)果,其中兩次摸出的球恰好都是紅球的占2種,所以兩次摸出的球恰好都是紅球的概率==;(2)根據(jù)題意得,解得n=1.【點睛】本題考查的是概率問題,熟練掌握樹狀圖法和概率公式是解題的關(guān)鍵.25、(1)y=x+3,y=﹣x2﹣2x+3;(2)(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,)【分析】(1)首先由題意根據(jù)拋物線的對稱性求得點B的坐標(biāo),然后利用交點式,求得拋物線的解析式;再利用待定系數(shù)法求得直線的解析式;(2)首先利用勾股定理求得BC,PB,PC的長,然后分別從點B為直角頂點、點C為直角頂點、點P為直角頂點去分析求解即可求得答案.【詳解】解:(1)∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),拋物線與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論