版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆安徽省阜陽太和縣聯(lián)考數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖是正方體的一種平面展開圖,它的每個面上都有一個漢字,那么在原正方體的表面上,與漢字“治”相對的面上的漢字是()A.全 B.面 C.依 D.法2.如果點D、E分別在△ABC中的邊AB和AC上,那么不能判定DE∥BC的比例式是()A.AD:DB=AE:EC B.DE:BC=AD:ABC.BD:AB=CE:AC D.AB:AC=AD:AE3.在同一坐標系中一次函數(shù)和二次函數(shù)的圖象可能為()A. B. C. D.4.如圖是一個半徑為5cm的圓柱形輸油管的橫截面,若油面寬AB=8cm,則油面的深度為()A.1cm B.1.5cm C.2cm D.2.5cm5.如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,則tanA的值為()A. B. C. D.6.小明和小華玩“石頭、剪子、布”的游戲.若隨機出手一次,則小華獲勝的概率是()A. B. C. D.7.一次函數(shù)y=﹣3x+b圖象上有兩點A(x1,y1),B(x2,y2),若x1<x2,則y1,y2的大小關(guān)系是()A.y1>y2 B.y1<y2C.y1=y(tǒng)2 D.無法比較y1,y2的大小8.點A(1,y1)、B(3,y2)是反比例函數(shù)y=圖象上的兩點,則y1、y2的大小關(guān)系是()A.y1>y2 B.y1=y(tǒng)2 C.y1<y2 D.不能確定9.如圖,中,,將繞著點旋轉(zhuǎn)至,點的對應(yīng)點點恰好落在邊上.若,,則的長為()A. B. C. D.10.對于二次函數(shù)y=(x-1)2+2的圖象,下列說法正確的是()A.開口向下B.當x=-1,時,y有最大值是2C.對稱軸是x=-1D.頂點坐標是(1,2)11.在△ABC中,∠C=90°,則下列等式成立的是()A.sinA= B.sinA= C.sinA= D.sinA=12.如圖,在平面直角坐標系中,以為圓心作⊙,⊙與軸交于、,與軸交于點,為⊙上不同于、的任意一點,連接、,過點分別作于,于.設(shè)點的橫坐標為,.當點在⊙上順時針從點運動到點的過程中,下列圖象中能表示與的函數(shù)關(guān)系的部分圖象是()A. B. C. D.二、填空題(每題4分,共24分)13.已知二次函數(shù)的圖象經(jīng)過原點,則的值為_______.14.如圖,在中,是斜邊的垂直平分線,分別交于點,若,則______.15.找出如下圖形變化的規(guī)律,則第100個圖形中黑色正方形的數(shù)量是_____.16.如圖,在ABCD中,點E是AD邊上一點,AE:ED=1:2,連接AC、BE交于點F.若S△AEF=1,則S四邊形CDEF=_______.17.已知函數(shù),當時,函數(shù)值y隨x的增大而增大.18.如圖,國慶節(jié)期間,小明一家自駕到某景區(qū)C游玩,到達A地后,導(dǎo)航顯示車輛應(yīng)沿北偏西60°方向行駛8千米至B地,再沿北偏東45°方向行駛一段距離到達景區(qū)C,小明發(fā)現(xiàn)景區(qū)C恰好在A地的正北方向,則B,C兩地的距離為_____.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,拋物線與軸交于,兩點,與軸交于點,直線經(jīng)過,兩點,拋物線的頂點為,對稱軸與軸交于點.(1)求此拋物線的解析式;(2)求的面積;(3)在拋物線上是否存在一點,使它到軸的距離為4,若存在,請求出點的坐標,若不存在,則說明理由.20.(8分)已知拋物線的頂點坐標是(1,-4),且經(jīng)過點(0,-3),求與該拋物線相應(yīng)的二次函數(shù)表達式.21.(8分)已知關(guān)于x的方程x2-(2k-1)x+k2-2k+3=0有兩個不相等的實數(shù)根.(1)求實數(shù)k的取值范圍.(2)設(shè)方程的兩個實數(shù)根分別為x1,x2,是否存在這樣的實數(shù)k,使得|x1|-|x2|=成立?若存在,求出這樣的k值;若不存在,請說明理由.22.(10分)已知是關(guān)于的一元二次方程的兩個實數(shù)根.(1)求的取值范圍;(2)若,求的值;23.(10分)先化簡,再求值:,然后從0,1,2三個數(shù)中選擇一個恰當?shù)臄?shù)代入求值.24.(10分)如圖,在△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,E是AC中點.(1)求證:DE是⊙O的切線;(2)若AB=10,BC=6,連接CD,OE,交點為F,求OF的長.25.(12分)已知:二次函數(shù)為(1)寫出它的圖象的開口方向,對稱軸及頂點坐標;(2)為何值時,頂點在軸上方;(3)若拋物線與軸交于,過作軸交拋物線于另一點,當時,求此二次函數(shù)的解析式.26.如圖1是小區(qū)常見的漫步機,從側(cè)面看如圖2,踏板靜止時,踏板連桿與立柱上的線段重合,長為0.2米,當踏板連桿繞著點旋轉(zhuǎn)到處時,測得,此時點距離地面的高度為0.44米.求:(1)踏板連桿的長.(2)此時點到立柱的距離.(參考數(shù)據(jù):,,)
參考答案一、選擇題(每題4分,共48分)1、C【分析】首先將展開圖折疊,即可得出與漢字“治”相對的面上的漢字.【詳解】由題意,得與漢字“治”相對的面上的漢字是“依”,故答案為C.【點睛】此題主要考查對正方體展開圖的認識,熟練掌握,即可解題.2、B【解析】由AD:DB=AE:EC,DE:BC=AD:AB與BD:AB=CE:ACAB:AC=AD:AE,根據(jù)平行線分線段成比例定理,均可判定DE∥BC,然后利用排除法即可求得答案.【詳解】A、∵AD:DB=AE:EC,∴DE∥BC,故本選項能判定DE∥BC;
B、由DE:BC=AD:AB,不能判定DE∥BC,故本選項不能判定DE∥BC.
C、∵BD:AB=CE:AC,∴DE∥BC,故本選項能判定DE∥BC;D、∵AB:AC=AD:AE,∴AB:AD=AC:AE,∴DE∥BC,,故本選項能判定DE∥BC.
所以選B.【點睛】此題考查了平行線分線段成比例定理.此題難度不大,解題的關(guān)鍵是注意準確應(yīng)用平行線分線段成比例定理與數(shù)形結(jié)合思想的應(yīng)用.3、A【詳解】根據(jù)二次函數(shù)的解析式可得:二次函數(shù)圖像經(jīng)過坐標原點,則排除B和C,A選項中一次函數(shù)a>0,b<0,二次函數(shù)a>0,b<0,符合題意.故選A.【點睛】本題考查了(1)、一次函數(shù)的圖像;(2)、二次函數(shù)的圖像4、A【分析】過點O作OD⊥AB于點D,根據(jù)垂徑定理可求出AD的長,再在Rt△AOD中,利用勾股定理求出OD的長即可得到答案.【詳解】解:過點O作OD⊥AB于點D,∵AB=8cm,∴AD=AB=4cm,在Rt△AOD中,OD===2(cm),∴油面深度為:5-2=1(cm)故選:A.【點睛】本題考查了垂徑定理和勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.5、D【分析】由三角函數(shù)定義即可得出答案.【詳解】如圖所示:由圖可得:AD=3,CD=4,∴tanA.故選:D.【點睛】本題考查了解直角三角形.構(gòu)造直角三角形是解答本題的關(guān)鍵.6、A【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與小華獲勝的情況數(shù),再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:
∵共有9種等可能的結(jié)果,小華獲勝的情況數(shù)是3種,
∴小華獲勝的概率是:=.
故選:A.【點睛】此題主要考查了列表法和樹狀圖法求概率知識,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、A【分析】根據(jù)一次函數(shù)圖象的增減性判斷即可.【詳解】∵k=﹣3<0,∴y值隨x值的增大而減小,又∵x1<x1,∴y1>y1.故選:A.【點睛】本題考查一次函數(shù)圖象的增減性,關(guān)鍵在于先判斷k值再根據(jù)圖象的增減性判斷.8、A【解析】∵反比例函數(shù)y=中的9>0,∴經(jīng)過第一、三象限,且在每一象限內(nèi)y隨x的增大而減小,又∵A(1,y?)、B(3,y?)都位于第一象限,且1<3,∴y?>y?,故選A.9、A【分析】先在直角三角形ABC中,求出AB,BC,然后證明△ABD為等邊三角形,得出BD=AB=2,再根據(jù)CD=BC-BD即可得出結(jié)果.【詳解】解:在Rt△ABC中,AC=2,∠B=60°,∴BC=2AB,BC2=AC2+AB2,∴4AB2=AC2+AB2,
∴AB=2,BC=4,
由旋轉(zhuǎn)得,AD=AB,
∵∠B=60°,∴△ABD為等邊三角形,
∴BD=AB=2,
∴CD=BC-BD=4-2=2,
故選:A.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),含30°角的直角三角形的性質(zhì),勾股定理以及等邊三角形的判定與性質(zhì),解本題的關(guān)鍵是綜合運用基本性質(zhì).10、D【解析】根據(jù)二次函數(shù)的性質(zhì)對各選項進行判斷.【詳解】A、由二次函數(shù)的解析式y(tǒng)=(x+1)2+2,可知系數(shù)>1,故函數(shù)圖像開口向上.故A項錯誤;B、將x=﹣1代入解析式,得到y(tǒng)=6,故B項錯誤;C、由二次函數(shù)的頂點式y(tǒng)=(x+1)2+2可知對稱軸為x=1,故C項錯誤;D、函數(shù)的頂點式y(tǒng)=(x+1)2+2可知該函數(shù)的頂點坐標是(1,2),故D項正確.故選D.【點睛】本題主要考查二次函數(shù)的圖像與性質(zhì),理解二次函數(shù)的頂點式是解答此題的關(guān)鍵.11、B【解析】分析:根據(jù)題意畫出圖形,進而分析得出答案.詳解:如圖所示:sinA=.故選B.點睛:本題主要考查了銳角三角函數(shù)的定義,正確記憶邊角關(guān)系是解題的關(guān)鍵.12、A【分析】由題意,連接PC、EF,利用勾股定理求出,然后得到AB的長度,由垂徑定理可得,點E是AQ中點,點F是BQ的中點,則EF是△QAB的中位線,即為定值,由,即可得到答案.【詳解】解:如圖,連接PC,EF,則∵點P為(3,0),點C為(0,2),∴,∴半徑,∴;∵于,于,∴點E是AQ中點,點F是BQ的中點,∴EF是△QAB的中位線,∴為定值;∵AB為直徑,則∠AQB=90°,∴四邊形PFQE是矩形,∴,為定值;∴當點在⊙上順時針從點運動到點的過程中,y的值不變;故選:A.【點睛】本題考查了圓的性質(zhì),垂徑定理,矩形的判定和性質(zhì),勾股定理,以及三角形的中位線定理,正確作出輔助線,根據(jù)所學(xué)性質(zhì)進行求解,正確找到是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、2;【分析】本題中已知了二次函數(shù)經(jīng)過原點(1,1),因此二次函數(shù)與y軸交點的縱坐標為1,即m(m-2)=1,由此可求出m的值,要注意二次項系數(shù)m不能為1.【詳解】根據(jù)題意得:m(m?2)=1,∴m=1或m=2,∵二次函數(shù)的二次項系數(shù)不為零,所以m=2.故填2.【點睛】本題考查二次函數(shù)圖象上點的坐標特征,需理解二次函數(shù)與y軸的交點的縱坐標即為常數(shù)項的值.14、2【分析】連接BF,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AF=BF,再根據(jù)等邊對等角的性質(zhì)求出∠ABF=∠A,然后根據(jù)三角形的內(nèi)角和定理求出∠CBF,再根據(jù)三角函數(shù)的定義即可求出CF.【詳解】如圖,連接BF,
∵EF是AB的垂直平分線,
∴AF=BF,
∴,,在△BCF中,∴,∴.故答案為:.【點睛】本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),三角函數(shù)的定義,熟記性質(zhì)并作出輔助線是解題的關(guān)鍵.15、150個【分析】根據(jù)圖形的變化尋找規(guī)律即可求解.【詳解】觀察圖形的變化可知:當n為偶數(shù)時,第n個圖形中黑色正方形的數(shù)量為(n+)個;當n為奇數(shù)時,第n個圖形中黑色正方形的數(shù)量為(n+)個.所以第100個圖形中黑色正方形的數(shù)量是150個.故答案為150個.【點睛】本題難度系數(shù)較大,需要根據(jù)觀察得出奇偶數(shù)是不同情況,找出規(guī)律.16、11【分析】先根據(jù)平行四邊形的性質(zhì)易得,根據(jù)相似三角形的判定可得△AFE∽△CFB,再根據(jù)相似三角形的性質(zhì)得到△BFC的面積,,進而得到△AFB的面積,即可得△ABC的面積,再根據(jù)平行四邊形的性質(zhì)即可得解.【詳解】解:∵AE:ED=1:2,∴AE:AD=1:3,∵AD=BC,∴AE:BC=1:3,∵AD∥BC,∴△AFE∽△CFB,∴,∴,∴S△BCF=9,∵,∴S△AFB=3,∴S△ACD=S△ABC=S△BCF+S△AFB=12,∴S四邊形CDEF=S△ACD﹣S△AEF=12﹣1=11.故答案為11.【點睛】本題主要考查相似三角形的判定與性質(zhì),平行四邊形的性質(zhì)等,解此題的關(guān)鍵在于熟練掌握其知識點.17、x≤﹣1.【解析】試題分析:∵=,a=﹣1<0,拋物線開口向下,對稱軸為直線x=﹣1,∴當x≤﹣1時,y隨x的增大而增大,故答案為x≤﹣1.考點:二次函數(shù)的性質(zhì).18、4千米.【分析】根據(jù)題意在圖中作出直角三角形,由題中給出的方向角和距離,先求出的長,再根據(jù)等腰三角形的性質(zhì)即可求得.【詳解】過B作BD⊥AC于點D.在Rt△ABD中,BD=ABsin∠BAD=8×=4(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=4(千米),∴BC=,BD=4(千米).故答案為:4千米.【點睛】本題考查特殊角的三角函數(shù)值和利用三角函數(shù)解三角形,屬基礎(chǔ)題.三、解答題(共78分)19、(1)y=﹣x2+x+2;(2);(3)存在一點P或,使它到x軸的距離為1【分析】(1)先根據(jù)一次函數(shù)的解析式求出A和C的坐標,再將點A和點C的坐標代入二次函數(shù)解析式即可得出答案;(2)先求出頂點D的坐標,再過D點作DM平行于y軸交AC于M,再分別以DM為底求△ADM和△DCM的面積,相加即可得出答案;(3)令y=1或y=-1,求出x的值即可得出答案.【詳解】解:(1)直線y=﹣x+2中,當x=0時,y=2;當y=0時,0=﹣x+2,解得x=1∴點A、C的坐標分別為(0,2)、(1,0),把A(0,2)、C(1,0)代入解得,故拋物線的表達式為:y=﹣x2+x+2;(2)y=﹣x2+x+2∴拋物線的頂點D的坐標為,如圖1,設(shè)直線AC與拋物線的對稱軸交于點M直線y=﹣x+2中,當x=時,y=點M的坐標為,則DM=∴△DAC的面積為=;(3)當P到x軸的距離為1時,則①當y=1時,﹣x2+x+2=1,而,所以方程沒有實數(shù)根②當y=-1時,﹣x2+x+2=-1,解得則點P的坐標為或;綜上,存在一點P或,使它到x軸的距離為1.【點睛】本題考查的是二次函數(shù),難度適中,需要熟練掌握“鉛垂高、水平寬”的方法來求面積.20、y=x2-2x-3【分析】由于知道了頂點坐標是(1,-4),所以可設(shè)頂點式求解,即設(shè)y=a(x-1)2-4,然后把點(0,-3)代入即可求出系數(shù)a,從而求出解析式.【詳解】解:設(shè)y=a(x-1)2-4,∵經(jīng)過點(0,-3),∴-3=a(0-1)2-4,解得a=1∴二次函數(shù)表達式為y=x2-2x-321、(1)k>;(2)1.【分析】(1)由方程有兩個不相等的實數(shù)根知△>2,列出關(guān)于k的不等式求解可得;(2)由韋達定理知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k﹣1)2+1>2,可以判斷出x1>2,x2>2.將原式兩邊平方后把x1+x2、x1x2代入得到關(guān)于k的方程,求解可得.【詳解】解:(1)由題意知△>2,∴[﹣(2k﹣1)]2﹣1×1×(k2﹣2k+2)>2,整理得:1k﹣7>2,解得:k;(2)由題意知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k+1)2+1>2,∴x1,x2同號.∵x1+x2=2k﹣1>=,∴x1>2,x2>2.∵|x1|﹣|x2|,∴x1﹣x2,∴x12﹣2x1x2+x22=5,即(x1+x2)2﹣1x1x2=5,代入得:(2k﹣1)2﹣1(k2﹣2k+2)=5,整理,得:1k﹣12=2,解得:k=3.【點睛】本題考查了根與系數(shù)的關(guān)系及根的判別式,熟練掌握判別式的值與方程的根之間的關(guān)系及韋達定理是解題的關(guān)鍵.22、(1);(2).【分析】(1)由方程有兩個實數(shù)根可知,代入方程的系數(shù)可求出m的取值范圍.(2)將等式左邊展開,根據(jù)根與系數(shù)的關(guān)系,,代入系數(shù)解方程可求出m,再根據(jù)m的取值范圍舍去不符合題意的值即可.【詳解】解:(1)方程有兩個實數(shù)根(2)由根與系數(shù)的關(guān)系,得:,【點睛】本題考查一元二次方程根的判別式,根與系數(shù)的關(guān)系,熟記公式是解題的關(guān)鍵.23、,-1.【解析】括號內(nèi)先通分進行分式的加減法運算,然后再進行分式的乘除法運算,最后選擇使原式有意義的數(shù)值代入化簡后的結(jié)果進行計算即可.【詳解】原式=,由x-2≠0且(x-1)2≠0可得x≠2且x≠1,所以x=0,當時,原式.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算法則是解題的關(guān)鍵.24、(1)見解析;(2)OF=1.1【分析】(1)由題意連接CD、OD,求得即可證明DE是⊙O的切線;(2)根據(jù)題意運用切線的性質(zhì)、角平分線性質(zhì)和勾股定理以及三角形的面積公式進行綜合分析求解.【詳解】解:(1)證明:連接CD,OD∵∠ACB=90°,BC為⊙O直徑,∴∠BDC=∠ADC=90°,∵E為AC中點,∴EC=ED=AE,∴∠ECD=∠EDC;又∵∠OCD=∠CDO,∴∠EDC+∠CDO=∠ECD+∠OCD=∠ACB=90°,∴DE是⊙O的切線.(2)解:連接CD,OE,∵∠ACB=90°,∴AC為⊙O的切線,∵DE是⊙O的切線,∴EO平分∠CED,∴OE⊥CD,F(xiàn)為CD的中點,∵點E、O分別為AC、BC的中點,∴OE=AB==5,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,由勾股定理得:AC=1,∵在Rt△ADC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)新職業(yè)服務(wù)協(xié)議模板(2024年)
- DB11∕T 1705-2019 農(nóng)業(yè)機械作業(yè)規(guī)范 青飼料收獲機
- 2024年企業(yè)新員工勞動協(xié)議細則
- 2024電子商務(wù)平臺服務(wù)居間協(xié)議
- 2024美發(fā)沙龍個人聘用協(xié)議樣本
- 2024挖掘機購銷協(xié)議范本
- 2024智能家居設(shè)備安裝服務(wù)協(xié)議
- 2024年度紀錄片后期制作服務(wù)協(xié)議
- 夫妻雙方房產(chǎn)分割自愿離婚協(xié)議格式
- 2024物業(yè)管理室內(nèi)裝修協(xié)議
- 《肉牛營養(yǎng)需要》教學(xué)課件
- 網(wǎng)易云音樂用戶滿意度調(diào)查問卷
- 雪佛蘭愛唯歐說明書
- 經(jīng)營分析報告案例-麥肯錫風(fēng)格
- 煙花爆竹經(jīng)營單位主要負責人安全培訓(xùn)
- 2023春國開會計實務(wù)專題形考任務(wù)1-4題庫及答案匯總
- 可疑值的取舍-Q檢驗法
- 生物信息學(xué)(上海海洋大學(xué))知到章節(jié)答案智慧樹2023年
- 核磁共振T臨床應(yīng)用
- 文件與文件夾測試題(含參考答案)
- 電工安全培訓(xùn)課件
評論
0/150
提交評論