2024屆北京市海淀區(qū)清華大附中數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第1頁
2024屆北京市海淀區(qū)清華大附中數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第2頁
2024屆北京市海淀區(qū)清華大附中數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第3頁
2024屆北京市海淀區(qū)清華大附中數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第4頁
2024屆北京市海淀區(qū)清華大附中數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆北京市海淀區(qū)清華大附中數(shù)學九年級第一學期期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,△ABC中,AB=25,BC=7,CA=1.則sinA的值為()A. B. C. D.2.關于x的方程有實數(shù)根,則k的取值范圍是()A. B.且 C. D.且3.方程x(x﹣5)=x的解是()A.x=0

B.x=0或x=5

C.x=6 D.x=0或x=64.用頻率估計概率,可以發(fā)現(xiàn),某種幼樹在一定條件下移植成活的概率為0.9,下列說法正確的是(

)A.種植10棵幼樹,結果一定是“有9棵幼樹成活”B.種植100棵幼樹,結果一定是“90棵幼樹成活”和“10棵幼樹不成活”C.種植10n棵幼樹,恰好有“n棵幼樹不成活”D.種植n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.95.如圖,中,,,,則的值是()A. B. C. D.6.如圖所示,⊙的半徑為13,弦的長度是24,,垂足為,則A.5 B.7 C.9 D.117.下列事件中是不可能事件的是()A.三角形內角和小于180° B.兩實數(shù)之和為正C.買體育彩票中獎 D.拋一枚硬幣2次都正面朝上8.下列事件是必然事件的是()A.打開電視機,正在播放籃球比賽 B.守株待兔C.明天是晴天 D.在只裝有5個紅球的袋中摸出1球,是紅球.9.下列事件中,是必然事件的是()A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球B.拋擲一枚普通正方體骰子,所得點數(shù)小于7C.拋擲一枚一元硬幣,正面朝上D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊10.在平面直角坐標系中,點E(﹣4,2),點F(﹣1,﹣1),以點O為位似中心,按比例1:2把△EFO縮小,則點E的對應點E的坐標為(

)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)二、填空題(每小題3分,共24分)11.如圖,中,,則__________.12.擲一個質地均勻的正方體骰子,向上一面的點數(shù)為奇數(shù)的概率是_____.13.形狀與拋物線相同,對稱軸是直線,且過點的拋物線的解析式是________.14.如圖,矩形中,,點是邊上一點,交于點,則長的取值范圍是____.15.如圖,某海防響所發(fā)現(xiàn)在它的西北方向,距離哨所400米的處有一般船向正東方向航行,航行一段時間后到達哨所北偏東方向的處,則此時這般船與哨所的距離約為________米.(精確到1米,參考數(shù)據(jù):,)16.在△ABC中,∠ABC=90°,已知AB=3,BC=4,點Q是線段AC上的一個動點,過點Q作AC的垂線交直線AB于點P,當△PQB為等腰三角形時,線段AP的長為_____.17.如圖,已知⊙O的半徑是2,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為_____.18.將二次函數(shù)化成的形式,則__________.三、解答題(共66分)19.(10分)如圖,轉盤A的三個扇形面積相等,分別標有數(shù)字1,2,3,轉盤B的四個扇形面積相等,分別有數(shù)字1,2,3,1.轉動A、B轉盤各一次,當轉盤停止轉動時,將指針所落扇形中的兩個數(shù)字相乘(當指針落在四個扇形的交線上時,重新轉動轉盤).(1)用樹狀圖或列表法列出所有可能出現(xiàn)的結果;(2)求兩個數(shù)字的積為奇數(shù)的概率.20.(6分)如圖,在8×8的正方形網(wǎng)格中,△AOB的頂點都在格點上.請在網(wǎng)格中畫出△OAB的一個位似圖形,使兩個圖形以點O為位似中心,且所畫圖形與△OAB的位似為2:1.21.(6分)金牛區(qū)某學校開展“數(shù)學走進生活”的活動課,本次任務是測量大樓AB的高度.如圖,小組成員選擇在大樓AB前的空地上的點C處將無人機垂直升至空中D處,在D處測得樓AB的頂部A處的仰角為,測得樓AB的底部B處的俯角為.已知D處距地面高度為12m,則這個小組測得大樓AB的高度是多少?(結果保留整數(shù).參考數(shù)據(jù):,,)22.(8分)如圖,在平面直角坐標系中,將繞點順指針旋轉到的位置,點、分別落在點、處,點在軸上,再將繞點順時針旋轉到的位置,點在軸上,將繞點順時針旋轉到的位置,點在軸上,依次進行下午……,若點,,則點的橫坐標為__________.23.(8分)解方程:(1)(2)24.(8分)(1)解方程:(配方法)(2)已知二次函數(shù):與軸只有一個交點,求此交點坐標.25.(10分)如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進30海里到達B點,此時,測得海島C位于北偏東30°的方向,求海島C到航線AB的距離CD的長(結果保留根號).26.(10分)已知二次函數(shù)的圖像是經(jīng)過、兩點的一條拋物線.(1)求這個函數(shù)的表達式,并在方格紙中畫出它的大致圖像;(2)點為拋物線上一點,若的面積為,求出此時點的坐標.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)勾股定理逆定理推出∠C=90°,再根據(jù)進行計算即可;【詳解】解:∵AB=25,BC=7,CA=1,又∵,∴,∴△ABC是直角三角形,∠C=90°,∴=;故選A.【點睛】本題主要考查了銳角三角函數(shù)的定義,勾股定理逆定理,掌握銳角三角函數(shù)的定義,勾股定理逆定理是解題的關鍵.2、C【分析】關于x的方程可以是一元一次方程,也可以是一元二次方程;當方程為一元一次方程時,k=1;是一元二次方程時,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有實數(shù)根下必須滿足△=b2-4ac≥1.【詳解】當k=1時,方程為3x-1=1,有實數(shù)根,當k≠1時,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.綜上可知,當k≥-時,方程有實數(shù)根;故選C.【點睛】本題考查了方程有實數(shù)根的含義,一元二次方程根的判別式的應用.切記不要忽略一元二次方程二次項系數(shù)不為零這一隱含條件.注意到分兩種情況討論是解題的關鍵.3、D【分析】先移項,然后利用因式分解法解方程.【詳解】解:x(x﹣5)﹣x=0,x(x﹣5﹣1)=0,x=0或x﹣5﹣1=0,∴x1=0或x2=1.故選:D.【點睛】本題考查了解一元二次方程﹣因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).4、D【解析】A.種植10棵幼樹,結果可能是“有9棵幼樹成活”,故不正確;B.種植100棵幼樹,結果可能是“90棵幼樹成活”和“10棵幼樹不成活”,故不正確;C.種植10n棵幼樹,可能有“9n棵幼樹成活”,故不正確;D.種植10n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.9,故正確;故選D.5、C【分析】根據(jù)勾股定理求出a,然后根據(jù)正弦的定義計算即可.【詳解】解:根據(jù)勾股定理可得a=∴故選C.【點睛】此題考查的是勾股定理和求銳角三角函數(shù)值,掌握利用勾股定理解直角三角形和正弦的定義是解決此題的關鍵.6、A【詳解】試題分析:已知⊙O的半徑為13,弦AB的長度是24,,垂足為N,由垂徑定理可得AN=BN=12,再由勾股定理可得ON=5,故答案選A.考點:垂徑定理;勾股定理.7、A【解析】根據(jù)三角形的內角和定理,可知:“三角形內角和等于180°”,故是不可能事件;根據(jù)實數(shù)的加法,可知兩實數(shù)之和可能為正,可能是0,可能為負,故是可能事件;根據(jù)買彩票可能中獎,故可知是可能事件;根據(jù)硬幣的特點,拋一枚硬幣2次有可能兩次都正面朝上,故是可能事件.故選A.8、D【分析】根據(jù)必然事件、不可能事件、隨機事件的概念進行解答即可.【詳解】解:打開電視機,正在播放籃球比賽是隨機事件,不符合題意;守株待兔是隨機事件,不符合題意;明天是晴天是隨機事件,不符合題意在只裝有5個紅球的袋中摸出1球,是紅球是必然事件,D符合題意.故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.9、B【解析】根據(jù)事件發(fā)生的可能性大小即可判斷.【詳解】A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球的概率為0,故錯誤;B.拋擲一枚普通正方體骰子,所得點數(shù)小于7的概率為1,故為必然事件,正確;C.拋擲一枚一元硬幣,正面朝上的概率為50%,為隨機事件,故錯誤;D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊,為隨機事件,故錯誤;故選B.【點睛】此題主要考查事件發(fā)生的可能性,解題的關鍵是熟知概率的定義.10、A【分析】利用位似比為1:2,可求得點E的對應點E′的坐標為(2,-1)或(-2,1),注意分兩種情況計算.【詳解】∵E(-4,2),位似比為1:2,∴點E的對應點E′的坐標為(2,-1)或(-2,1).故選A.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比.注意位似的兩種位置關系.二、填空題(每小題3分,共24分)11、17【解析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案為17.12、【解析】解:擲一次骰子6個可能結果,而奇數(shù)有3個,所以擲到上面為奇數(shù)的概率為:.故答案為.13、或.【分析】先從已知入手:由與拋物線形狀相同則相同,且經(jīng)過點,即把代入得,再根據(jù)對稱軸為可求出,即可寫出二次函數(shù)的解析式.【詳解】解:設所求的二次函數(shù)的解析式為:,與拋物線形狀相同,,,又∵圖象過點,∴,∵對稱軸是直線,∴,∴當時,,當時,,所求的二次函數(shù)的解析式為:或.【點睛】本題考查了利用待定系數(shù)法求二次函數(shù)的解析式和二次函數(shù)的系數(shù)和圖象之間的關系.解答時注意拋物線形狀相同時要分兩種情況:①開口向下,②開口向上;即相等.14、【分析】證明,利用相似比列出關于AD,DE,EC,CF的關系式,從而求出長的取值范圍.【詳解】∵∴∴∵四邊形是矩形∴∴∴∴∴∴因為∴故答案為:.【點睛】本題考查了一元二次方程的最值問題,掌握相似三角形的性質以及判定、解一元二次方程得方法是解題的關鍵.15、566【分析】通過解直角△OAC求得OC的長度,然后通過解直角△OBC求得OB的長度即可.【詳解】設與正北方向線相交于點,根據(jù)題意,所以,在中,因為,所以,中,因為,所以(米).故答案為566.【點睛】考查了解直角三角形的應用-方向角的問題.此題是一道方向角問題,結合航海中的實際問題,將解直角三角形的相關知識有機結合,體現(xiàn)了數(shù)學應用于實際生活的思想.16、或1.【解析】當△PQB為等腰三角形時,有兩種情況,需要分類討論:①當點P在線段AB上時,如圖1所示.由三角形相似(△AQP∽△ABC)關系計算AP的長;②當點P在線段AB的延長線上時,如圖2所示.利用角之間的關系,證明點B為線段AP的中點,從而可以求出AP.【詳解】解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB為鈍角,∴當△PQB為等腰三角形時,當點P在線段AB上時,如題圖1所示:∵∠QPB為鈍角,∴當△PQB為等腰三角形時,只可能是PB=PQ,由(1)可知,△AQP∽△ABC,∴即解得:∴當點P在線段AB的延長線上時,如題圖2所示:∵∠QBP為鈍角,∴當△PQB為等腰三角形時,只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∴∠AQB=∠A,∴BQ=AB,∴AB=BP,點B為線段AP中點,∴AP=2AB=2×3=1.綜上所述,當△PQB為等腰三角形時,AP的長為或1.故答案為或1.【點睛】本題考查相似三角形的判定和性質、等腰三角形的性質等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考??碱}型.17、【分析】連接OB和AC交于點D,根據(jù)菱形及直角三角形的性質先求出AC的長及∠AOC的度數(shù),然后求出菱形ABCO及扇形AOC的面積,則由S扇形AOC-S菱形ABCO可得答案.【詳解】連接OB和AC交于點D,如圖所示:∵圓的半徑為2,∴OB=OA=OC=2,又四邊形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=則圖中陰影部分面積為S扇形AOC﹣S菱形ABCO=故答案為【點睛】本題考查扇形面積的計算及菱形的性質,解題關鍵是熟練掌握菱形的面積和扇形的面積,有一定的難度.18、【分析】利用配方法,加上一次項系數(shù)的一半的平方來湊完全平方式,即可把一般式轉化為頂點式.【詳解】解:,,.故答案為:.【點睛】本題考查了二次函數(shù)的三種形式:一般式:,頂點式:;兩根式:.正確利用配方法把一般式化為頂點式是解題的關鍵.三、解答題(共66分)19、(1)結果見解析;(2)13【解析】解:(1)畫樹狀圖得:則共有12種等可能的結果;(2)∵兩個數(shù)字的積為奇數(shù)的1種情況,∴兩個數(shù)字的積為奇數(shù)的概率為:412試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)由兩個數(shù)字的積為奇數(shù)的情況,再利用概率公式即可求得答案.20、答案見解析.【分析】延長AO,BO,根據(jù)相似比,在延長線上分別截取AO,BO的2倍,確定所作的位似圖形的關鍵點A',B',再順次連接所作各點,即可得到放大2倍的位似圖形△A'B'C'.【詳解】解:如圖【點睛】本題考查作圖-位似變換,數(shù)形結合思想解題是關鍵.21、這個小組測得大樓AB的高度是31m.【分析】過點D作于點E,本題涉及到兩個直角三角形△BDE、△ADE,通過解這兩個直角三角形求得DE、AE的長度,進而可解即可求出答案.【詳解】過點D作于點E,則,在中,,∵,∴,∴.在中,,∵,,∴,∴.答:這個小組測得大樓AB的高度是31m.【點睛】本題考查解直角三角形的應用-仰角俯角問題.解直角梯形可以通過作高線轉化為解直角三角形和矩形的問題.22、【解析】由圖形規(guī)律可知在X軸上,根據(jù)觀察的規(guī)律即可解題.【詳解】因為,,所以0A=,OB=4,所以AB==,所以(10,4),(20,4),(30,4),(10090,4),的橫坐標為10090++=10096.【點睛】本題考查圖形的變化—旋轉,勾股定理,以及由特殊到一般查找規(guī)律.23、(1),;(2)x1=2,x2=-1.【分析】(1)方程移項后,利用完全平方公式配方,開方即可求出解;(2)提取公因式化為積的形式,然后利用兩因式相乘積為0,兩因式中至少有一個為0,轉化為兩個一元一次方程來求解.【詳解】解:(1)方程整理得:,

配方得:,即,

開方得:,

解得:,;(2)方程變形得:,即,即或,解得.【點睛】本題考查解一元二次方程.熟練掌握解一元二次方程的方法,并能結合實際情況選擇合適的方法是解決此題的關鍵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論