版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省廣州市花都秀全中學九年級數(shù)學第一學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,△ABC內(nèi)接于⊙O,AB=BC,∠ABC=120°,AD為⊙O的直徑,AD=6,那么AB的值為()A.3 B. C. D.22.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(
)A. B. C. D.3.如圖,某超市自動扶梯的傾斜角為,扶梯長為米,則扶梯高的長為()A.米 B.米 C.米 D.米4.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長為()A.4 B..5 C.6 D.85.如圖,在Rt△ABC中,AC=6,AB=10,則sinA的值()A. B. C. D.6.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.7.二次函數(shù)y=a(x+k)2+k,無論k為何實數(shù),其圖象的頂點都在()A.直線y=x上 B.直線y=﹣x上 C.x軸上 D.y軸上8.如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,若旋轉(zhuǎn)角為20°,則∠1為()A.110° B.120° C.150° D.160°9.如圖,線段OA=2,且OA與x軸的夾角為45°,將點A繞坐標原點O逆時針旋轉(zhuǎn)105°后得到點,則的坐標為()A. B. C. D.10.某種品牌運動服經(jīng)過兩次降價,每件零售價由560元降為315元,已知兩次降價的百分率相同,求每次降價的百分率.設每次降價的百分率為x,下面所列的方程中正確的是()A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1-x2)=315二、填空題(每小題3分,共24分)11.已知二次函數(shù),當-1≤x≤4時,函數(shù)的最小值是__________.12.如圖,沿傾斜角為30°的山坡植樹,要求相鄰兩棵樹間的水平距離AC為2m,那么相鄰兩棵樹的斜坡距離AB約為________m.(結(jié)果精確到0.1m)13.建國70周年閱兵式中,三軍女兵方隊共352人,其中領隊2人,方隊中,每排的人數(shù)比排數(shù)多11,則女兵方隊共有____________排,每排有__________人.14.如圖,在正方形ABCD中,對角線AC、BD交于點O,E是BC的中點,DE交AC于點F,則tan∠BDE=______.15.已知點是線段的一個黃金分割點,且,,那么__________.16.如圖,在中,,且把分成面積相等的兩部分.若,則的長為________.17.在平面直角坐標系中,點P(3,﹣5)關于原點對稱的點的坐標是_____.18.函數(shù)中自變量x的取值范圍是________.三、解答題(共66分)19.(10分)已知:如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點,且點B的坐標為.(1)求反比例函數(shù)的表達式;(2)點在反比例函數(shù)的圖象上,求△AOC的面積;(3)在(2)的條件下,在坐標軸上找出一點P,使△APC為等腰三角形,請直接寫出所有符合條件的點P的坐標.20.(6分)某超市銷售一種書包,平均每天可銷售100件,每件盈利30元.試營銷階段發(fā)現(xiàn):該商品每件降價1元,超市平均每天可多售出10件.設每件商品降價元時,日盈利為元.據(jù)此規(guī)律,解決下列問題:(1)降價后每件商品盈利元,超市日銷售量增加件(用含的代數(shù)式表示);(2)在上述條件不變的情況下,求每件商品降價多少元時,超市的日盈利最大?最大為多少元?21.(6分)圖①、圖②均是6×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點.線段AB的端點均在格點上,按下列要求畫出圖形.(1)在圖①中找到兩個格點C,使∠BAC是銳角,且tan∠BAC=;(2)在圖②中找到兩個格點D,使∠ADB是銳角,且tan∠ADB=1.22.(8分)如圖,AB是垂直于水平面的一座大樓,離大樓20米(BC=20米)遠的地方有一段斜坡CD(坡度為1:0.75),且坡長CD=10米,某日下午一個時刻,在太陽光照射下,大樓的影子落在了水平面BC,斜坡CD,以及坡頂上的水平面DE處(A、B、C、D、E均在同一個平面內(nèi)).若DE=4米,且此時太陽光與水平面所夾銳角為24°(∠AED=24°),試求出大樓AB的高.(其中,sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)23.(8分)將兩張半徑均為10的半圓形的紙片完全重合疊放一起,上面這張紙片繞著直徑的一端B順時針旋轉(zhuǎn)30°后得到如圖所示的圖形,與直徑AB交于點C,連接點與圓心O′.(1)求的長;(2)求圖中下面這張半圓形紙片未被上面這張紙片重疊部分的面積.24.(8分)如圖,已知拋物線C1交直線y=3于點A(﹣4,3),B(﹣1,3),交y軸于點C(0,6).(1)求C1的解析式.(2)求拋物線C1關于直線y=3的對稱拋物線的解析式;設C2交x軸于點D和點E(點D在點E的左邊),求點D和點E的坐標.(3)將拋物線C1水平向右平移得到拋物線C3,記平移后點B的對應點B′,若DB平分∠BDE,求拋物線C3的解析式.(4)直接寫出拋物線C1關于直線y=n(n為常數(shù))對稱的拋物線的解析式.25.(10分)如圖,方格紙中的每個小正方形的邊長都為1,在建立平面直角坐標系后,△ABC的頂點均在格點上.(1)以點A為旋轉(zhuǎn)中心,將△ABC繞點A逆時針旋轉(zhuǎn)90°得到△AB1C1,畫出△AB1C1.(2)畫出△ABC關于原點O成中心對稱的△A2B2C2,若點C的坐標為(﹣4,﹣1),則點C2的坐標為.26.(10分)如圖,PA,PB是圓O的切線,A,B是切點,AC是圓O的直徑,∠BAC=25°,求∠P的度數(shù).
參考答案一、選擇題(每小題3分,共30分)1、A【詳解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圓中同弧所對的圓周角,∴∠D=∠C=10°.∵AD為直徑,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故選A.2、D【解析】一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結(jié)果,其中摸出白球的所有等可能結(jié)果共有2種,根據(jù)概率公式即可得出答案.【詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【點睛】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.3、A【詳解】解:由題意,在Rt△ABC中,∠ABC=31°,由三角函數(shù)關系可知,
AC=AB?sinα=9sin31°(米).
故選A.【點睛】本題主要考查了三角函數(shù)關系在直角三角形中的應用.4、C【解析】解:∵AD∥BE∥CF,根據(jù)平行線分線段成比例定理可得,即,解得EF=6,故選C.5、A【分析】根據(jù)勾股定理得出BC的長,再根據(jù)sinA=代值計算即可.【詳解】解:∵在Rt△ABC中,AC=6,AB=10,∴BC==8,∴sinA===;故選:A.【點睛】本題考查勾股定理及正弦的定義,熟練掌握正弦的表示是解題的關鍵.6、C【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義逐項進行判斷即可.【詳解】A、是中心對稱圖形,但不是軸對稱圖形,故不符合題意;B、是軸對稱圖形,但不是中心對稱圖形,故不符合題意;C、既是中心對稱圖形,又是軸對稱圖形,符合題意;D、既不是中心對稱圖形,也不是軸對稱圖形,故不符合題意.故選:C.【點睛】本題考查中心對稱圖形和軸對稱圖形的定義,熟練掌握定義是關鍵.7、B【解析】試題分析:根據(jù)函數(shù)解析式可得:函數(shù)的頂點坐標為(-k,k),則頂點在直線y=-x上.考點:二次函數(shù)的頂點8、A【解析】設C′D′與BC交于點E,如圖所示:∵旋轉(zhuǎn)角為20°,∴∠DAD′=20°,∴∠BAD′=90°?∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°?70°?90°?90°=11°,∴∠1=∠BED′=110°.故選A.9、C【分析】如圖所示,過作⊥y軸于點B,作⊥x軸于點C,根據(jù)旋轉(zhuǎn)的性質(zhì)得出,,從而得出,利用銳角三角函數(shù)解出CO與OB即可解答.【詳解】解:如圖所示,過作⊥y軸于點B,作⊥x軸于點C,由旋轉(zhuǎn)可知,,,∵AO與x軸的夾角為45°,∴∠AOB=45°,∴,∴,,∴,故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及解直角三角形,解題的關鍵是得出,并熟悉銳角三角函數(shù)的定義及應用.10、B【解析】試題分析:根據(jù)題意,設設每次降價的百分率為x,可列方程為560(1-x)2=315.故選B二、填空題(每小題3分,共24分)11、-1【分析】根據(jù)題意和二次函數(shù)的性質(zhì)可以求得當?1≤x≤4時,函數(shù)的最小值.【詳解】解:∵二次函數(shù),∴該函數(shù)的對稱軸是直線x=1,當x>1時,y隨x的增大而增大,當x<1時,y隨x的增大而減小,∵?1≤x≤4,∴當x=1時,y取得最小值,此時y=-1,故答案為:-1.【點睛】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.12、2.3【解析】AB是Rt△ABC的斜邊,這個直角三角形中,已知一邊和一銳角,滿足解直角三角形的條件,可求出AB的長.【詳解】在Rt△ABC中,∴∴即斜坡AB的長為2.3m.故答案為2.3.【點睛】考查解直角三角形的實際應用,熟練掌握銳角三角函數(shù)是解題的關鍵.13、14;1【分析】先設三軍女兵方隊共有排,則每排有()人,根據(jù)三軍女兵方隊共352人可列方程求解即可.【詳解】設三軍女兵方隊共有排,則每排有()人,根據(jù)題意得:
,
整理,得.
解得:(不合題意,舍去),
則(人).
故答案為:14,1.【點睛】本題考查了一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程,再求解.14、【分析】設AD=DC=a,根據(jù)勾股定理求出AC,易證△AFD∽△CFE,根據(jù)相似三角形的性質(zhì),可得:=2,進而求得CF,OF的長,由銳角的正切三角函數(shù)定義,即可求解.【詳解】∵四邊形ABCD是正方形,∴∠ADC=90°,AC⊥BD,設AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中點,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案為:.【點睛】本題主要考查相似三角形的判定和性質(zhì)定理以及正切三角函數(shù)的定義,根據(jù)題意,設AD=DC=a,表示出OF,OD的長度,是解題的關鍵.15、【分析】根據(jù)黃金分割的概念得到,把代入計算即可.【詳解】∵P是線段AB的黃金分割點,∴故答案為.【點睛】本題考查了黃金分割點的應用,理解黃金分割點的比例并會運算是解題的關鍵.16、【分析】由平行于BC的直線DE把△ABC分成面積相等的兩部分,可知△ADE與△ABC相似,且面積比為,則相似比為,的值為,可求出AB的長,則DB的長可求出.【詳解】∵DE∥BC
∴△ADE∽△ABC
∵DE把△ABC分成面積相等的兩部分
∴S△ADE=S四邊形DBCE
∴
∴∵AD=4,
∴AB=4∴DB=AB-AD=4-4
故答案為:4-4【點睛】本題考查了相似三角形的判定,相似三角形的性質(zhì),面積比等于相似比的平方的逆用等.17、(﹣3,5)【分析】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反,即可得答案.【詳解】點P(3,﹣5)關于原點對稱的點的坐標是(﹣3,5),故答案為:(﹣3,5).【點睛】本題主要考查平面直角坐標系中,關于原點的兩個點的坐標變化規(guī)律,掌握兩個點關于原點對稱時,它們的坐標符號相反,是解題的關鍵.18、x≥-1且x≠1.【分析】根據(jù)二次根式的被開方數(shù)非負和分式的分母不為0可得關于x的不等式組,解不等式組即可求得答案.【詳解】解:根據(jù)題意,得,解得x≥-1且x≠1.故答案為x≥-1且x≠1.【點睛】本題考查了二次根式有意義的條件和分式有意義的條件,難度不大,屬于基礎題型.三、解答題(共66分)19、(1);(2);(3)(-1,0)、(0,0)、(0,1).【詳解】(1)一次函數(shù)的圖象過點B,∴∴點B坐標為∵反比例函數(shù)的圖象經(jīng)過點B反比例函數(shù)表達式為(2)設過點A、C的直線表達式為,且其圖象與軸交于點D∵點在反比例函數(shù)的圖象上∴∴點C坐標為∵點B坐標為∴點A坐標為解得:過點A、C的直線表達式為∴點D坐標為∴(3)①當點P在x軸上時,設P(m,0)∵AC=,AP=,CP=,∴=或=,解得:m=0或-1②當點P在y軸上時,設P(0,n),∵AC=,AP=,CP=,∴=或=解得:n=0或1綜上所述:點P的坐標可能為、、20、(1)(30-x);10x;(2)每件商品降價10元時,商場日盈利最大,最大值是4000元.【分析】(1)降價后的盈利等于原來每件的盈利減去降低的錢數(shù);件降價1元,超市平均每天可多售出10件,則降價x元,超市平均每天可多售出10x件;(2)等量關系為:每件商品的盈利×可賣出商品的件數(shù)=利潤w,化為一般式后,再配方可得出結(jié)論.【詳解】解:(1)降價后每件商品盈利(30-x)元;,超市日銷售量增加10x件;(2)設每件商品降價x元時,利潤為w元根據(jù)題意得:w=(30x)(100+10x)=10x2+200x+3000=-10(x-10)2+4000∵10<0,∴w有最大值,當x=10時,商場日盈利最大,最大值是4000元;答:每件商品降價10元時,商場日盈利最大,最大值是4000元.【點睛】本題考查的知識點是二次函數(shù)的實際應用,根據(jù)題意找出等量關系式列出利潤w關于x的二次函數(shù)解析式是解題的關鍵.21、(1)如圖①點C即為所求作的點;見解析;(2)如圖②,點D即為所求作的點,見解析.【分析】(1)在圖①中找到兩個格點C,使∠BAC是銳角,且tan∠BAC=;(2)在圖②中找到兩個格點D,使∠ADB是銳角,且tan∠ADB=1.【詳解】解:(1)如圖①點C即為所求作的點;(2)如圖②,點D即為所求作的點.【點睛】本題考查了作圖——應用與設計作圖,解直角三角形.解決本題的關鍵是準確畫圖.22、21.1米.【分析】延長ED交AB于G,作DH⊥BF于H,可得四邊形DHBG是矩形,從而得DG=BH,DH=BG,再根據(jù)條件解直角△DCH和直角△AEG即可求出結(jié)果.【詳解】解:延長ED交AB于G,作DH⊥BF于H,∵DE∥BF,∴四邊形DHBG是矩形,∴DG=BH,DH=BG,∵=,CD=10,∴DH=8,CH=6,∴GE=20+4+6=30,∵tan24°==0.41,∴AG=13.1,∴AB=AG+BG=13.1+8=21.1.答:大樓AB的高為21.1米.【點睛】本題考查了解直角三角形的應用之坡度問題,正確作出輔助線、熟練掌握解直角三角形的知識是解題的關鍵.23、(1)(2)【解析】試題分析:(1)連結(jié)BC,作O′D⊥BC于D,根據(jù)旋轉(zhuǎn)變換的性質(zhì)求出∠CBA′的度數(shù),根據(jù)弧長公式計算即可;(2)根據(jù)扇形面積公式、三角形面積公式,結(jié)合圖形計算即可.試題解析:(1)連結(jié)BC,作OD⊥BC于D,可求得∠BO′C=120,O′D=5,的長為(2)24、(1)C1的解析式為y=x2+x+1;(2)拋物線C2的解析式為y=﹣x2﹣x,D(﹣5,0),E(0,0);(3)拋物線C3的解析式為y=;(4)y=x2x+2n﹣1.【分析】(1)設拋物線C1經(jīng)的解析式為y=ax2+bx+c,將點A、B、C的坐標代入求解即可得到解析式;(2)先求出點C關于直線y=3的對稱點的坐標為(0,0),設拋物線C2的解析式為y=a1x2+b1x+c1,即可求出答案;(3)如圖,根據(jù)平行線的性質(zhì)及角平分線的性質(zhì)得到BB′=DB,利用勾股定理求出DB的長度即可得到拋物線平移的距離,由此得到平移后的解析式;(4)設拋物線C1關于直線y=n(n為常數(shù))對稱的拋物線的解析式為y=mx+nx+k,根據(jù)對稱性得到m、n的值,再利用對稱性得到新函數(shù)與y軸交點坐標得到k的值,由此得到函數(shù)解析式.【詳解】(1)設拋物線C1經(jīng)的解析式為y=ax2+bx+c,∵拋物線C1經(jīng)過點A(﹣4,3),B(﹣1,3),C(0,1).∴,解得,∴C1的解析式為y=x2+x+1;(2)∵C點關于直線y=3的對稱點為(0,0),設拋物線C2的解析式為y=a1x2+b1x+c1,∴,解得,∴拋物線C2的解析式為y=﹣x2﹣x;令y=0,則﹣x2﹣x=0,解得x1=0,x2=﹣5,∴D(﹣5,0),E(0,0);(3)如圖,∵DB′平分∠BDE,∴∠BDB′=∠ODB′,∵AB∥x軸,∴∠BB′D=∠ODB′,∴∠BDB′=∠BB′D,∴BB′=DB,∵BD==5,∴將拋物線C1水平向右平移5個單位得到拋物線C3,∵C1的解析式為y=x2+x+1=(x+)2+,∴拋物線C3的解析式為y=(x+﹣5)2+=;(4)設拋物線C1關于直線y=n(n為常數(shù))對稱的拋物線的解析式為y=mx+nx+k,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024辣椒購銷合同爭議的解決方式
- 2025年度智能化廚房設備采購與安裝一體化合同4篇
- 2025年投標采購心得體會總結(jié)與合同管理創(chuàng)新合同3篇
- 個人房屋轉(zhuǎn)讓協(xié)議書合同范本
- 2024年駕校場地使用權益轉(zhuǎn)讓合同
- 2025年度煤礦廢棄資源煤矸石回收利用合同4篇
- 2025年度油氣田鉆井工程合同執(zhí)行監(jiān)督合同范本4篇
- 全新2025年度醫(yī)療設備采購與安裝合同5篇
- 2025版污水處理廠智能化改造與運營維護協(xié)議3篇
- 2025版領隊與紀念品供應商合作協(xié)議范本4篇
- 2024-2030年中國護肝解酒市場營銷策略分析與未來銷售渠道調(diào)研研究報告
- 人教版高中數(shù)學必修二《第十章 概率》單元同步練習及答案
- 智慧校園信息化建設項目組織人員安排方案
- 浙教版七年級上冊數(shù)學第4章代數(shù)式單元測試卷(含答案)
- 一病一品成果護理匯報
- AQ-T 1009-2021礦山救護隊標準化考核規(guī)范
- 鹽酸??颂婺崤R床療效、不良反應與藥代動力學的相關性分析的開題報告
- 消防設施安全檢查表
- 組合結(jié)構設計原理 第2版 課件 第6、7章 鋼-混凝土組合梁、鋼-混凝土組合剪力墻
- 建筑公司資質(zhì)常識培訓課件
- GB/T 26316-2023市場、民意和社會調(diào)查(包括洞察與數(shù)據(jù)分析)術語和服務要求
評論
0/150
提交評論