2024屆河北省石家莊康福外國語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
2024屆河北省石家莊康福外國語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
2024屆河北省石家莊康福外國語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
2024屆河北省石家莊康福外國語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
2024屆河北省石家莊康福外國語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河北省石家莊康福外國語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,如果AP=3cm,那么PP′的長為()A. B. C. D.2.某??萍紝嵺`社團制作實踐設(shè)備,小明的操作過程如下:①小明取出老師提供的圓形細(xì)鐵環(huán),先通過在圓一章中學(xué)到的知識找到圓心O,再任意找出圓O的一條直徑標(biāo)記為AB(如圖1),測量出AB=4分米;②將圓環(huán)進行翻折使點B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點分別標(biāo)記為C、D(如圖2);③用一細(xì)橡膠棒連接C、D兩點(如圖3);④計算出橡膠棒CD的長度.小明計算橡膠棒CD的長度為()A.2分米 B.2分米 C.3分米 D.3分米3.三角形兩邊的長分別是8和6,第三邊的長是一元二次方程的一個實數(shù)根,則該三角形的面積是A.24 B.24或 C.48或 D.4.在平面直角坐標(biāo)系中,以點(3,2)為圓心、2為半徑的圓,一定()A.與x軸相切,與y軸相切 B.與x軸相切,與y軸相離C.與x軸相離,與y軸相切 D.與x軸相離,與y軸相離5.下列圖形中,∠1與∠2是同旁內(nèi)角的是()A.B.C.D.6.一個半徑為2cm的圓的內(nèi)接正六邊形的面積是()A.24cm2 B.6cm2 C.12cm2 D.8cm27.已知M(1,2),則M關(guān)于原點的對稱點N落在()A.的圖象上 B.的圖象上 C.的圖象上 D.的圖象上8.已知二次函數(shù)的與的部分對應(yīng)值如表:下列結(jié)論:①拋物線的開口向上;②拋物線的對稱軸為直線;③當(dāng)時,;④拋物線與軸的兩個交點間的距離是;⑤若是拋物線上兩點,則;⑥.其中正確的個數(shù)是()A. B. C. D.9.如圖,在Rt△ABC中,∠C=90°,AC=3,AB=5,則cosB的值為()A. B. C. D.10.如圖,中,,于,平分,且于,與相交于點,于,交于,下列結(jié)論:①;②;③;④.其中正確的是()A.①② B.①③ C.①②③ D.①②③④二、填空題(每小題3分,共24分)11.如圖,是的直徑,是的切線,交于點,,,則______.12.小北同學(xué)擲兩面質(zhì)地均勻硬幣,拋5次,4次正面朝上,則擲硬幣出現(xiàn)正面概率為_____.13.如圖,直線m∥n,以直線m上的點A為圓心,適當(dāng)長為半徑畫弧,分別交直線m,n于點B、C,連接AC、BC,若∠1=30°,則∠2=_____.14.如圖,中,,以點為圓心的圓與相切,則的半徑為________.15.甲、乙兩個籃球隊隊員身高的平均數(shù)都為2.07米,方差分別是、,且,則隊員身高比較整齊的球隊是_____.16.如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結(jié)果保留根號)17.四邊形ABCD是☉O的內(nèi)接四邊形,,則的度數(shù)為____________.18.已知實數(shù),是方程的兩根,則的值為________.三、解答題(共66分)19.(10分)某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標(biāo)系.(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內(nèi)?(3)經(jīng)檢修評估,游樂園決定對噴水設(shè)施做如下設(shè)計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.20.(6分)如圖,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.21.(6分)如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:(1)OA=_____,(2)作出∠AOB的平分線并在其上標(biāo)出一個點Q,使.22.(8分)平面直角坐標(biāo)系中,函數(shù)(x>0),y=x-1,y=x-4的圖象如圖所示,p(a,b)是直線上一動點,且在第一象限.過P作PM∥x軸交直線于M,過P作PN∥y軸交曲線于N.(1)當(dāng)PM=PN時,求P點坐標(biāo)(2)當(dāng)PM>PN時,直接寫出a的取值范圍.23.(8分)某化工廠要在規(guī)定時間內(nèi)搬運1200噸化工原料.現(xiàn)有,兩種機器人可供選擇,已知型機器人比型機器人每小時多搬運30噸型,機器人搬運900噸所用的時間與型機器人搬運600噸所用的時間相等.(1)求兩種機器人每小時分別搬運多少噸化工原料.(2)該工廠原計劃同時使用這兩種機器人搬運,工作一段時間后,型機器人又有了新的搬運任務(wù)需離開,但必須保證這批化工原料在11小時內(nèi)全部搬運完畢.問型機器人至少工作幾個小時,才能保證這批化工原料在規(guī)定的時間內(nèi)完成?24.(8分)某校為了解全校學(xué)生主題閱讀的情況,隨機抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計圖表.請根據(jù)統(tǒng)計圖表中的信息,解答下列問題:(1)求被抽查的學(xué)生人數(shù)和m的值;(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);(3)若該校共有1200名學(xué)生,根據(jù)抽查結(jié)果,估計該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù)。25.(10分)某商店經(jīng)銷一種學(xué)生用雙肩包,已知這種雙肩包的成本價為每個30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(個)與銷售單價x(元)有如下關(guān)系:y=﹣x+60(30≤x≤60).設(shè)這種雙肩包每天的銷售利潤為w元.(1)求w與x之間的函數(shù)關(guān)系式;(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于42元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應(yīng)定為多少.26.(10分)已知拋物線y=x2﹣bx+2b(b是常數(shù)).(1)無論b取何值,該拋物線都經(jīng)過定點D.請寫出點D的坐標(biāo).(2)該拋物線的頂點是(m,n),當(dāng)b取不同的值時,求n關(guān)于m的函數(shù)解析式.(3)若在0≤x≤4的范圍內(nèi),至少存在一個x的值,使y<0,求b的取值范圍.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】由題意易證,則有,進而可得,最后根據(jù)勾股定理可求解.【詳解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故選D.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及等腰直角三角形的性質(zhì)與判定,熟練掌握旋轉(zhuǎn)的性質(zhì)及等腰直角三角形的性質(zhì)與判定是解題的關(guān)鍵.2、B【分析】連接OC,作OE⊥CD,根據(jù)垂徑定理和勾股定理求解即可.【詳解】解:連接OC,作OE⊥CD,如圖3,∵AB=4分米,∴OC=2分米,∵將圓環(huán)進行翻折使點B落在圓心O的位置,∴分米,在Rt△OCE中,CE=分米,∴分米;故選:B.【點睛】此題綜合運用了勾股定理以及垂徑定理.注意構(gòu)造由半徑、半弦、弦心距組成的直角三角形進行有關(guān)的計算.3、B【分析】由,可利用因式分解法求得x的值,然后分別從x=6時,是等腰三角形;與x=10時,是直角三角形去分析求解即可求得答案.【詳解】∵,∴(x?6)(x?10)=0,解得:x1=6,x2=10,當(dāng)x=6時,則三角形是等腰三角形,如圖①,AB=AC=6,BC=8,AD是高,∴BD=4,AD=,∴S△ABC=BC?AD=×8×2=8;當(dāng)x=10時,如圖②,AC=6,BC=8,AB=10,∵AC2+BC2=AB2,∴△ABC是直角三角形,∠C=90°,S△ABC=BC?AC=×8×6=24.∴該三角形的面積是:24或8.故選B.【點睛】此題考查勾股定理的逆定理,解一元二次方程-因式分解法,勾股定理,解題關(guān)鍵在于利用勾股定理進行計算.4、B【分析】本題應(yīng)將該點的橫縱坐標(biāo)分別與半徑對比,大于半徑時,則坐標(biāo)軸與該圓相離;若等于半徑時,則坐標(biāo)軸與該圓相切.【詳解】∵是以點(2,3)為圓心,2為半徑的圓,則有2=2,3>2,∴這個圓與x軸相切,與y軸相離.故選B.【點睛】本題考查了直線與圓的位置關(guān)系、坐標(biāo)與圖形性質(zhì).直線與圓相切,直線到圓的距離等于半徑;與圓相離,直線到圓的距離大于半徑.5、C【解析】分析:根據(jù)同旁內(nèi)角的定義進行分析判斷即可.詳解:A選項中,∠1與∠2是同位角,故此選項不符合題意;B選項中,∠1與∠2是內(nèi)錯角,故此選項不符合題意;C選項中,∠1與∠2是同旁內(nèi)角,故此選項符合題意;D選項中,∠1與∠2不是同旁內(nèi)角,故此選項不符合題意.故選C.點睛:熟知“同旁內(nèi)角的定義:在兩直線被第三直線所截形成的8個角中,夾在被截兩直線之間,且位于截線的同側(cè)的兩個角叫做同旁內(nèi)角”是解答本題的關(guān)鍵.6、B【解析】設(shè)O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則△OAB是正三角形,△OAB的面積的六倍就是正六邊形的面積解:如圖所示:設(shè)O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則∠AOB=60°,OA=OB=2cm,∴△OAB是正三角形,∴AB=OA=2cm,OC=OA?sin∠A=2×=(cm),∴S△OAB=AB?OC=×2×=(cm2),∴正六邊形的面積=6×=6(cm2).故選B.7、A【分析】根據(jù)關(guān)于原點對稱的點的橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)得出N的坐標(biāo),再根據(jù)各函數(shù)關(guān)系式進行判斷即可.【詳解】點M(1,2)關(guān)于原點對稱的點N的坐標(biāo)是(-1,-2),∴當(dāng)x=-1時,對于選項A,y=2×(-1)=-2,滿足條件,故選項A正確;對于選項B,y=(-1)2=1≠-2故選項B錯誤;對于選項C,y=2×(-1)2=2≠-2故選項C錯誤;對于選項D,y=-1+2=1≠-2故選項D錯誤.故選A.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),以及函數(shù)圖象上點的坐標(biāo)特征,熟記關(guān)于原點對稱的點的橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)是解題的關(guān)鍵.8、B【分析】先利用待定系數(shù)法求出拋物線解析式,則可對①進行判斷;求出拋物線的對稱軸則可對②進行判斷;利用拋物線與x軸的兩個交點可對③④進行判斷;根據(jù)二次函數(shù)的增減性可對⑤進行判斷;根據(jù)a、b、c的具體數(shù)值可對⑥進行判斷.【詳解】解:由表格可知:拋物線與x軸的交點坐標(biāo)為(0,0),(4,0),∴設(shè)拋物線解析式為y=ax(x﹣4),把(﹣1,5)代入得:5=a×(﹣1)×(﹣1﹣4),解得a=1,∴拋物線解析式為y=x2﹣4x,所以①正確;∵(0,0)與(4,0)關(guān)于拋物線的對稱軸對稱,∴拋物線的對稱軸為直線x=2,所以②正確;∵拋物線的開口向上,且與x軸交于點(0,0)、(4,0),∴當(dāng)0<x<4時,y<0,所以③錯誤;拋物線與x軸的兩個交點(0,0)與(4,0)間的距離是4,所以④正確;若A(x1,2),B(x2,3)是拋物線上兩點,則,所以x1與x2的大小不能確定,所以⑤錯誤;∵a=1,b=-4,c=0,∴,所以⑥錯誤.綜上,正確的個數(shù)有3個,故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、拋物線與x軸的交點以及二次函數(shù)與不等式等知識,屬于常見題型,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.9、B【詳解】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理,得:BC===1.cosB==,故選B.【點睛】本題考查銳角三角函數(shù)的定義.10、C【分析】根據(jù)∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,從而得出DF=AD,BF=AC.則CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因為BF=AC所以CE=AC=BF;連接CG.因為△BCD是等腰直角三角形,即BD=CD.又因為DH⊥BC,那么DH垂直平分BC.即BG=CG;在Rt△CEG中,CG是斜邊,CE是直角邊,所以CE<CG.即AE<BG.【詳解】∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正確;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正確;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正確;連接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜邊,CE是直角邊,∴CE<CG.∵CE=AE,∴AE<BG.故④錯誤.故選C.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.在復(fù)雜的圖形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并應(yīng)用此點.二、填空題(每小題3分,共24分)11、【分析】因是的切線,利用勾股定理即可得到AB的值,是的直徑,則△ABC是直角三角形,可證得△ABC∽△APB,利用相似的性質(zhì)即可得出BC的結(jié)果.【詳解】解:∵是的切線∴∠ABP=90°∵,∴AB2+BP2=AP2∴AB=∵是的直徑∴∠ACB=90°在△ABC和△APB中∴△ABC∽△APB∴∴∴故答案為:【點睛】本題主要考查的是圓的性質(zhì)以及相似三角形的性質(zhì)和判定,掌握以上幾點是解此題的關(guān)鍵.12、【分析】根據(jù)拋擲一枚硬幣,要么正面朝上,要么反面朝上,可以求得相應(yīng)的概率.【詳解】無論哪一次擲硬幣,都有兩種可能,即正面朝上與反面朝上,則擲硬幣出現(xiàn)正面概率為:;故答案為:.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.13、75°【解析】試題解析:∵直線l1∥l2,∴故答案為14、【解析】試題解析:在△ABC中,∵AB=5,BC=3,AC=4,如圖:設(shè)切點為D,連接CD,∵AB是C的切線,∴CD⊥AB,∴AC?BC=AB?CD,即∴的半徑為故答案為:點睛:如果三角形兩條邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形.15、乙【解析】根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】解:∵,∴隊員身高比較整齊的球隊是乙,故答案為:乙.【點睛】本題考查方差.解題關(guān)鍵在于知道方差是用來衡量一組數(shù)據(jù)波動大小的量16、40【解析】利用等腰直角三角形的性質(zhì)得出AB=AD,再利用銳角三角函數(shù)關(guān)系即可得出答案.【詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【點睛】此題主要考查了解直角三角形的應(yīng)用,正確得出tan∠CDA=tan30°=是解題關(guān)鍵.17、130°【分析】根據(jù)圓內(nèi)接四邊形的對角互補,得∠ABC=180°-∠D=130°.【詳解】解:∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠ABC+∠D=180°,∵∠D=50°,∴∠ABC=180°-∠D=130°.故答案為:130°.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),圓內(nèi)接四邊形對角互補.18、-1【解析】先根據(jù)根與系數(shù)的關(guān)系得到a+b=1,ab=﹣1,再利用通分把+變形為,然后利用整體代入的方法計算.【詳解】根據(jù)題意得:a+b=1,ab=﹣1,所以+==﹣1.故答案為:﹣1.【點睛】本題主要考查一元二次方程根與系數(shù)的關(guān)系,熟練掌握根與系數(shù)關(guān)系的公式是關(guān)鍵.三、解答題(共66分)19、(1)水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣(x﹣3)2+5(0<x<8);(2)為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內(nèi);(3)擴建改造后噴水池水柱的最大高度為米.【解析】分析:(1)根據(jù)頂點坐標(biāo)可設(shè)二次函數(shù)的頂點式,代入點(8,0),求出a值,此題得解;(2)利用二次函數(shù)圖象上點的坐標(biāo)特征,求出當(dāng)y=1.8時x的值,由此即可得出結(jié)論;(3)利用二次函數(shù)圖象上點的坐標(biāo)特征可求出拋物線與y軸的交點坐標(biāo),由拋物線的形狀不變可設(shè)改造后水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣x2+bx+,代入點(16,0)可求出b值,再利用配方法將二次函數(shù)表達(dá)式變形為頂點式,即可得出結(jié)論.詳解:(1)設(shè)水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=a(x﹣3)2+5(a≠0),將(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣(x﹣3)2+5(0<x<8).(2)當(dāng)y=1.8時,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內(nèi).(3)當(dāng)x=0時,y=﹣(x﹣3)2+5=.設(shè)改造后水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣x2+bx+.∵該函數(shù)圖象過點(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣x2+3x+=﹣(x﹣)2+,∴擴建改造后噴水池水柱的最大高度為米.點睛:本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是:(1)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)表達(dá)式;(2)利用二次函數(shù)圖象上點的坐標(biāo)特征求出當(dāng)y=1.8時x的值;(3)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)表達(dá)式.20、sinA=,cosA=,tanA=.【分析】根據(jù)勾股定理求出AB,根據(jù)銳角三角函數(shù)的定義解答即可.【詳解】由勾股定理得,,則,,.【點睛】本題考查解直角三角形,解題的關(guān)鍵是利用勾股定理求出AB的長.21、5【解析】(1)依據(jù)勾股定理即可得到OA的長;(2)取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.【詳解】解:(1)由勾股定理,可得AO==5,故答案為5;(2)如圖,取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;如圖,取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【點睛】本題考查作圖﹣復(fù)雜作圖、角平分線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握等腰三角形的性質(zhì)的應(yīng)用,角平分線的性質(zhì)的應(yīng)用,勾股定理以及相似三角形的性質(zhì).22、(1)(2,1)或(,);(2)【分析】(1)根據(jù)直線與直線的特征,可以判斷為平行四邊形,且,再根據(jù)坐標(biāo)特征得到等式=3,即可求解;(2)根據(jù)第(1)小題的結(jié)果結(jié)合圖象即可得到答案.【詳解】(1)∵直線與軸交點,直線與軸交點,∴,∵直線與直線平行,且∥軸,∴為平行四邊形,∴,∵∥軸,在的圖象上,∴,∵在直線上,∴,∵,∴=3,解得:或,(2)如圖,∵或,,當(dāng)點在直線和區(qū)間運動時,,∴【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點問題,利用函數(shù)圖象性質(zhì)解決問題是本題的關(guān)鍵.23、(1)型機器人每小時搬運90噸化工原料,型機器人每小時搬運60噸化工原料;(2)A型機器人至少工作6小時,才能保證這批化工原料在規(guī)定的時間內(nèi)完成.【分析】(1)設(shè)B型機器人每小時搬運x噸化工原料,則A型機器人每小時搬運(x+30)噸化工原料,根據(jù)A型機器人搬運900噸所用的時間與B型機器人搬運600噸所用的時間相等建立方程求出其解就可以得出結(jié)論.

(2)設(shè)A型機器人工作t小時,根據(jù)這批化工原料在11小時內(nèi)全部搬運完畢列出不等式求解.【詳解】解:(1)設(shè)型機器人每小時搬運噸化工原料,則型機器人每小時搬運噸化工原料,根據(jù)題意,得,解得.經(jīng)檢驗,是所列方程的解.當(dāng)時,.答:型機器人每小時搬運90噸化工原料,型機器人每小時搬運60噸化工原料;(2)設(shè)型機器人工作小時,根據(jù)題意,得,解得.答:A型機器人至少工作6小時,才能保證這批化工原料在規(guī)定的時間內(nèi)完成.【點睛】本題考查的是分式方程應(yīng)用題和列不等式求解問題,找相等關(guān)系式是解題關(guān)鍵,(1)根據(jù)A型機器人搬運900千克所用的時間與B型機器人搬運600千克所用的時間相等建立方程,分式方程應(yīng)用題的解需要雙檢,一檢是否是方程的根,二檢是否符合題意;(2)總工作量-A型機器人的工作量≤B型機器人11小時的工作量,列不等式求解.24、(1)50,12;(2)5,4;(3)336.【分析】(1)先由6篇的人數(shù)及其所占百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他篇數(shù)的人數(shù)求得m的值;(2)根據(jù)中位數(shù)和眾數(shù)的定義求解;(3)用總?cè)藬?shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論