版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北恩施龍鳳民族初級中學數(shù)學九年級第一學期期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知點A(,m),B(l,m),C(2,1)在同一條拋物線上,則下列各點中一定在這條拋物線上的是(
)A. B. C. D.2.如圖,在直線上有相距的兩點和(點在點的右側),以為圓心作半徑為的圓,過點作直線.將以的速度向右移動(點始終在直線上),則與直線在______秒時相切.A.3 B.3.5 C.3或4 D.3或3.53.如圖,在菱形中,,且連接則()A. B.C. D.4.如圖,在平面直角坐標系中,點的坐標為,那么的值是()A. B. C. D.5.如圖,A,B是反比例函數(shù)y=圖象上兩點,AC⊥y軸于C,BD⊥x軸于D,AC=BD=OC,S四邊形ABCD=9,則k值為()A.8 B.10 C.12 D.1.6.已知⊙O的直徑為12cm,如果圓心O到一條直線的距離為7cm,那么這條直線與這個圓的位置關系是()A.相離 B.相切 C.相交 D.相交或相切7.如圖,已知⊙O是等腰Rt△ABC的外接圓,點D是上一點,BD交AC于點E,若BC=4,AD=,則AE的長是()A.1 B.1.2 C.2 D.38.拋物線y=(x﹣4)2﹣5的頂點坐標和開口方向分別是()A.(4,﹣5),開口向上 B.(4,﹣5),開口向下C.(﹣4,﹣5),開口向上 D.(﹣4,﹣5),開口向下9.已知是方程x2﹣2x+c=0的一個根,則c的值是()A.﹣3 B.3 C. D.210.如圖,兩點在反比例函數(shù)的圖象上,兩點在反比例函數(shù)的圖象上,軸于點,軸于點,,則的值是()A.2 B.3 C.4 D.6二、填空題(每小題3分,共24分)11.若是方程的一個根,則代數(shù)式的值是______.12.如圖,在平面直角坐標系中,點的坐標分別是,,若二次函數(shù)的圖象過兩點,且該函數(shù)圖象的頂點為,其中,是整數(shù),且,,則的值為__________.13.在△ABC中,分別以AB,AC為斜邊作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,連接DE.若DE=5,則BC長為_____.14.如圖,請補充一個條件_________:,使△ACB∽△ADE.15.若實數(shù)a、b滿足a+b2=2,則a2+5b2的最小值為_____.16.如圖,點p是∠的邊OA上的一點,點p的坐標為(12,5),則tanα=_____.17.質檢部門為了檢測某品牌電器的質量,從同一批次共10000件產(chǎn)品中隨機柚取100件進行檢測,檢測出次品5件,由此估計這一批產(chǎn)品中的次品件數(shù)是_____.18.在半徑為的圓中,的圓心角所對的弧長是__________.三、解答題(共66分)19.(10分)在平面直角坐標系中,已知拋物線.(1)我們把一條拋物線上橫坐標與縱坐標相等的點叫做這條拋物線的“方點”.試求拋物線的“方點”的坐標;(2)如圖,若將該拋物線向左平移1個單位長度,新拋物線與軸相交于、兩點(在左側),與軸相交于點,連接.若點是直線上方拋物線上的一點,求的面積的最大值;(3)第(2)問中平移后的拋物線上是否存在點,使是以為直角邊的直角三角形?若存在,直接寫出所有符合條件的點的坐標;若不存在,說明理由.20.(6分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.(1)求證:CD是⊙O的切線;(2)若∠D=30°,BD=2,求圖中陰影部分的面積.21.(6分)據(jù)《九章算術》記載:“今有山居木西,不知其高.山去五十三里,木高九丈西尺,人立木東三里,望木末適與山峰斜平.人目高七尺.問山高幾何?”大意如下:如圖,今有山位于樹的西面.山高為未知數(shù),山與樹相距里,樹高丈尺,人站在離樹里的處,觀察到樹梢恰好與山峰處在同一斜線上,人眼離地尺,問山AB的高約為多少丈?(丈尺,結果精確到個位)22.(8分)如圖,在△ABC中,AB=4cm,AC=6cm.(1)作圖:作BC邊的垂直平分線分別交與AC,BC于點D,E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,連結BD,求△ABD的周長.23.(8分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,請用樹狀圖或列表法求下列事件的概率.(1)兩次取出的小球的標號相同;(2)兩次取出的小球標號的和等于6.24.(8分)如圖,是的直徑,弦于點,點在上,恰好經(jīng)過圓心,連接.(1)若,,求的直徑;(2)若,求的度數(shù).25.(10分)閱讀材料:材料2若一元二次方程ax2+bx+c=0(a≠0)的兩個根為x2,x2則x2+x2=﹣,x2x2=.材料2已知實數(shù)m,n滿足m2﹣m﹣2=0,n2﹣n﹣2=0,且m≠n,求的值.解:由題知m,n是方程x2﹣x﹣2=0的兩個不相等的實數(shù)根,根據(jù)材料2得m+n=2,mn=﹣2,所以=﹣2.根據(jù)上述材料解決以下問題:(2)材料理解:一元二次方程5x2+20x﹣2=0的兩個根為x2,x2,則x2+x2=,x2x2=.(2)類比探究:已知實數(shù)m,n滿足7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,求m2n+mn2的值:(2)思維拓展:已知實數(shù)s、t分別滿足29s2+99s+2=0,t2+99t+29=0,且st≠2.求的值.26.(10分)如圖,在中,點在邊上,.點在邊上,.(1)求證:;(2)若,求的長.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)拋物線的對稱性進行分析作答.【詳解】由點A(,m),B(l,m),可得:拋物線的對稱軸為y軸,∵C(2,1),∴點C關于y軸的對稱點為(-2,1),故選:B.【點睛】本題考查二次函數(shù)的圖象和性質,找到拋物線的對稱軸是本題的關鍵.2、C【分析】根據(jù)與直線AB的相對位置分類討論:當在直線AB左側并與直線AB相切時,根據(jù)題意,先計算運動的路程,從而求出運動時間;當在直線AB右側并與直線AB相切時,原理同上.【詳解】解:當在直線AB左側并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO-=6cm∵以的速度向右移動∴此時的運動時間為:÷2=3s;當在直線AB右側并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO+=8cm∵以的速度向右移動∴此時的運動時間為:÷2=4s;綜上所述:與直線在3或4秒時相切故選:C.【點睛】此題考查的是直線與圓的位置關系:相切和動圓問題,掌握相切的定義和行程問題公式:時間=路程÷速度是解決此題的關鍵.3、D【分析】菱形ABCD屬于平行四邊形,所以BCAD,根據(jù)兩直線平行同旁內角互補,可得∠BAD與∠ABC互補,已知∠BAD=120°,∠ABC的度數(shù)即可知,且∠BCE=90°,CE=BC可推BCE為等腰直角三角形,其中∠CBE=45°,∠ABE=∠ABC-∠CBE,故∠ABE的度數(shù)可得.【詳解】解:∵在菱形ABCD中,BCAD,∴∠BAD+∠ABC=180°(兩直線平行,同旁內角互補),且∠BAD=120°,∴∠ABC=60°,又∵CEAD,且BCAD,∴CEBC,可得∠BCE=90°,又∵CE=BC,∴BCE為等腰直角三角形,∠CBE=45°,∴∠ABE=∠ABC-∠CBE=60°-45°=15°,故選:D.【點睛】本題主要考察了平行線的性質及菱形的性質求角度,掌握平行線的性質:①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補;菱形中,四條邊的線段長度一樣,根據(jù)以上的性質定理,從邊長的關系推得三角形的形狀,進而求得角度.4、D【分析】過A作AB⊥x軸于點B,在Rt△AOB中,利用勾股定理求出OA,再根據(jù)正弦的定義即可求解.【詳解】如圖,過A作AB⊥x軸于點B,∵A的坐標為(4,3)∴OB=4,AB=3,在Rt△AOB中,∴故選:D.【點睛】本題考查求正弦值,利用坐標求出直角三角形的邊長是解題的關鍵.5、B【分析】分別延長CA、DB,它們相交于E,如圖,設AC=t,則BD=t,OC=5t,根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=OD?t=t?5t,則OD=5t,所以B點坐標為(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四邊形ABCD=S△ECD﹣S△EAB得到?5t?5t﹣?4t?4t=9,解得t2=2,然后根據(jù)k=t?5t進行計算.【詳解】解:分別延長CA、DB,它們相交于E,如圖,設AC=t,則BD=t,OC=5t,∵A,B是反比例函數(shù)y=圖象上兩點,∴k=OD?t=t?5t,∴OD=5t,∴B點坐標為(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四邊形ABCD=S△ECD﹣S△EAB,∴?5t?5t﹣?4t?4t=9,∴t2=2,∴k=t?5t=5t2=5×2=2.故選:B.【點睛】本題考查了比例系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.6、A【分析】這條直線與這個圓的位置關系只要比較圓心到直線的距離與半徑的大小關系即可.【詳解】∵⊙O的直徑為12cm,∴⊙O的半徑r為6cm,如果圓心O到一條直線的距離d為7cm,d>r,這條直線與這個圓的位置關系是相離.故選擇:A.【點睛】本題考查直線與圓的位置關系問題,掌握點到直線的距離與半徑的關系是關鍵.7、A【解析】利用圓周角性質和等腰三角形性質,確定AB為圓的直徑,利用相似三角形的判定及性質,確定△ADE和△BCE邊長之間的關系,利用相似比求出線段AE的長度即可.【詳解】解:∵等腰Rt△ABC,BC=4,∴AB為⊙O的直徑,AC=4,AB=4,∴∠D=90°,在Rt△ABD中,AD=,AB=4,∴BD=,∵∠D=∠C,∠DAC=∠CBE,∴△ADE∽△BCE,∵AD:BC=:4=1:5,∴相似比為1:5,設AE=x,∴BE=5x,∴DE=-5x,∴CE=28-25x,∵AC=4,∴x+28-25x=4,解得:x=1.故選A.【點睛】題目考查了圓的基本性質、等腰直角三角形性質、相似三角形的判定及應用等知識點,題目考查知識點較多,是一道綜合性試題,題目難易程度適中,適合課后訓練.8、A【解析】根據(jù)y=a(x﹣h)2+k,a>0時圖象開口向上,a<0時圖象開口向下,頂點坐標是(h,k),對稱軸是x=h,可得答案.【詳解】由y=(x﹣4)2﹣5,得開口方向向上,頂點坐標(4,﹣5).故選:A.【點睛】本題考查了二次函數(shù)的性質,利用y=a(x﹣h)2+k,a>0時圖象開口向上,在對稱軸的左側,y隨x的增大而減小,在對稱軸的右側,y隨x的增大而增大;a<0時圖象開口向下,在對稱軸的左側,y隨x的增大而增大,在對稱軸的右側,y隨x的增大而減小,頂點坐標是(h,k),對稱軸是x=h.9、B【分析】把x=代入方程得到關于c的方程,然后解方程即可.【詳解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故選:B.【點睛】本題考查了一元二次方程根的性質,解答關鍵是將方程的根代入原方程求出字母系數(shù).10、D【分析】連接OA、OB、OC、OD,由反比例函數(shù)的性質得到,,結合兩式即可得到答案.【詳解】連接OA、OB、OC、OD,由題意得,,∵,∴,∵,∴,∴,∵AC=3,BD=2,EF=5,∴解得OE=2,∴,故選:D.【點睛】此題考查反比例函數(shù)圖象上點的坐標特點,比例系數(shù)與三角形面積的關系,掌握反比例函數(shù)解析式中k的幾何意義是解題的關鍵.二、填空題(每小題3分,共24分)11、9【分析】根據(jù)方程解的定義,將a代入方程得到含a的等式,將其變形,整體代入所求的代數(shù)式.【詳解】解:∵a是方程的一個根,∴2a2=a+3,∴2a2-a=3,∴.故答案為:9.【點睛】本題考查方程解的定義及代數(shù)式求值問題,理解方程解的定義和整體代入思想是解答此題的關鍵.12、,【分析】先將A,B兩點的坐標代入,消去c可得出b=1-7a,c=10a,得出xM=-=,yM=.方法一:分以下兩種情況:①a>0,畫出示意圖,可得出yM=0,1或2,進而求出a的值;②a<0時,根據(jù)示意圖可得,yM=5,6或7,進而求出a的值;方法二:根據(jù)題意可知或7①,或7②,由①求出a的值,代入②中驗證取舍從而可得出a的值.【詳解】解:將A,B兩點的坐標代入得,,②-①得,3=21a+3b,∴b=1-7a,c=10a.∴原解析式可以化為:y=ax2+(1-7a)x+10a.∴xM=-=,yM=,方法一:①當a>0時,開口向上,∵二次函數(shù)經(jīng)過A,B兩點,且頂點中,x,y均為整數(shù),且,,畫出示意圖如圖①,可得0≤yM≤2,∴yM=0,1或2,當yM=0時,解得a=,不滿足xM為整數(shù)的條件,舍去;當yM=1時,解得a=1(a=不符合條件,舍去);當yM=2時,解得a=,符合條件.②a<0時,開口向下,畫出示意圖如圖②,根據(jù)題中條件可得,5≤yM≤7,只有當yM=5,a=-時,當yM=6,a=-1時符合條件.綜上所述,a的值為,.方法二:根據(jù)題意可得或7;或7③,∴當時,解得a=,不符合③,舍去;當時,解得a=,不符合③,舍去;當時,解得a=,符合③中條件;當時,解得a=1,符合③中條件;當時,解得a=-1,符合③中條件;當時,解得a=-,符合③中條件;當時,解得a=-,不符合③舍去;當時,解得a=-,不符合③舍去;綜上可知a的值為:,.故答案為:,【點睛】本題主要考查二次函數(shù)的解析式、頂點坐標以及函數(shù)圖像的整數(shù)點問題,掌握基本概念與性質是解題的關鍵.13、1【分析】由在Rt△ABD和Rt△ACE中,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,可證得△ABD∽△ACE,AD=AB,繼而可證得△ABC∽△ADE,然后由相似三角形的對應邊成比例,求得答案.【詳解】∵∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,∴△ABD∽△ACE,AD=AB,∴∠BAD=∠CAE,AB:AC=AD:AE,∴∠BAC=∠DAE,AB:AD=AC:AE,∴△ABC∽△ADE,∴=2,∵DE=5,∴BC=1.故答案為:1.【點睛】此題考查了相似三角形的判定與性質以及含30度角的直角三角形.此題難度適中,注意掌握數(shù)形結合思想的應用.14、∠ADE=∠C或∠AED=∠B或【分析】由∠A是公共角,且DE與BC不平行,可得當∠ADE=∠C或∠AED=∠B或時,△ADE∽△ACB.【詳解】①補充∠ADE=∠C,理由是:∵∠A是公共角,∠ADE=∠C,
∴△ADE∽△ACB.故答案為:∠ADE=∠C.②補充∠AED=∠B,理由是:∵A是公共角,∠AED=∠B,
∴△ADE∽△ACB.
③補充,理由是:∵∠A是公共角,,
∴△ADE∽△ACB.故答案為:∠ADE=∠C或∠AED=∠B或【點睛】本題考查了相似三角形的判定與性質.注意掌握判定定理的應用,注意掌握數(shù)形結合思想的應用.15、1【分析】由a+b2=2得出b2=2-a,代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10,再利用配方法化成a2+5b2=(a-,即可求出其最小值.【詳解】∵a+b2=2,
∴b2=2-a,a≤2,
∴a2+5b2=a2+5(2-a)=a2-5a+10=(a-,
當a=2時,
a2+b2可取得最小值為1.
故答案是:1.【點睛】考查了二次函數(shù)的最值,解題關鍵是根據(jù)題意得出a2+5b2=(a-.16、【分析】根據(jù)題意過P作PE⊥x軸于E,根據(jù)P(12,5)得出PE=5,OE=12,根據(jù)銳角三角函數(shù)定義得出,代入進行計算求出即可.【詳解】解:過P作PE⊥x軸于E,∵P(12,5),∴PE=5,OE=12,∴.故答案為:.【點睛】本題考查銳角三角函數(shù)的定義的應用,注意掌握在Rt△ACB中,∠C=90°,則.17、500【分析】次品率,根據(jù)抽取的樣本數(shù)求得該批產(chǎn)品的次品率之后再乘以產(chǎn)品總數(shù)即可求解.【詳解】解:,(件)【點睛】本題主要考查了數(shù)據(jù)樣本與頻率問題,亦可根據(jù)比例求解.18、【分析】根據(jù)弧長公式:即可求出結論.【詳解】解:由題意可得:弧長=故答案為:.【點睛】此題考查的是求弧長,掌握弧長公式是解決此題的關鍵.三、解答題(共66分)19、(1)拋物線的方點坐標是,;(2)當時,的面積最大,最大值為;(3)存在,或【分析】(1)由定義得出x=y,直接代入求解即可(2)作輔助線PD平行于y軸,先求出拋物線與直線的解析式,設出點P的坐標,利用點坐標求出PD的長,進而求出面積的二次函數(shù),再利用配方法得出最大值(3)通過拋物線與直線的解析式可求出點B,C的坐標,得出△OBC為等腰直角三角形,過點C作交x軸于點M,作交y軸于點N,得出M,N的坐標,得出直線BN、MC的解析式然后解方程組即可.【詳解】解:(1)由題意得:∴解得,∴拋物線的方點坐標是,.(2)過點作軸的平行線交于點.易得平移后拋物線的表達式為,直線的解析式為.設,則.∴∴∴當時,的面積最大,最大值為.(3)如圖所示,過點C作交x軸于點M,作交y軸于點N由已知條件得出點B的坐標為B(3,0),C的坐標為C(0,3),∴△COB是等腰直角三角形,∴可得出M、N的坐標分別為:M(-3,0),N(0,-3)直線CM的解析式為:y=x+3直線BN的解析式為:y=x-3由此可得出:或解方程組得出:或∴或【點睛】本題是一道關于二次函數(shù)的綜合題目,解題的關鍵是根據(jù)題意得出拋物線與直線的解析式.20、(1)證明見解析;(2)陰影部分面積為【解析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質,等邊三角形的性質等知識,熟練掌握和靈活運用相關知識是解題的關鍵.21、由的高約為丈.【分析】由題意得里,尺,尺,里,過點作于點,交于點,得尺,里,里,根據(jù)相似三角形的性質即可求出.【詳解】解:由題意得里,尺,尺,里.如圖,過點作于點,交于點.則尺,里,里,,∴△ECH∽△EAG,,丈,丈.答:由的高約為丈.【點睛】此題主要考查了相似三角形在實際生活中的應用,能夠將實際問題轉化成相似三角形是解題的關鍵.22、(1)詳見解析;(2)10cm.【分析】(1)運用作垂直平分線的方法作圖,(2)運用垂直平分線的性質得出BD=DC,利用△ABD的周長=AB+BD+AD=AB+AC即可求解.【詳解】解:(1)如圖1,(2)如圖2,∵DE是BC邊的垂直平分線,∴BD=DC,∵AB=4cm,AC=6cm.∴△ABD的周長=AB+BD+AD=AB+AC=4+6=10cm.【點睛】本題考查的是尺規(guī)作圖以及線段垂直平分線的性質:線段垂直平分線上的點到線段兩端的距離相等,23、(1);(2)=.【分析】(1)列出表格展示所有可能的結果,再找到相同小球的情況數(shù),利用概率公式,即可求解;(2)找出兩次取出的小球標號的和等于6的情況數(shù),再利用概率公式,即可求解.【詳解】解:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)總共有16種可能,其中4種兩次取的小球標號一樣,∴P=;(2)有三種情況:2+4=6,3+3=6,4+2=6,∴P=.【點睛】本題主要考查例舉法求隨機事件的概率,掌握列表法或畫樹狀圖以及概率公式是解題的關鍵.24、(1)1;(2)【分析】(1)由CD=16,BE=4,根據(jù)垂徑定理得出CE=DE=8,設⊙O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨沂科技職業(yè)學院《精細化學工藝學》2023-2024學年第一學期期末試卷
- 遼河石油職業(yè)技術學院《糧油食品加工工藝學》2023-2024學年第一學期期末試卷
- 江西信息應用職業(yè)技術學院《食品質量與安全控制》2023-2024學年第一學期期末試卷
- 江蘇工程職業(yè)技術學院《女性文學鑒賞》2023-2024學年第一學期期末試卷
- 華東政法大學《健康教育》2023-2024學年第一學期期末試卷
- 湖北黃岡應急管理職業(yè)技術學院《外國文學專題》2023-2024學年第一學期期末試卷
- 遵義醫(yī)藥高等專科學?!恫牧虾附有浴?023-2024學年第一學期期末試卷
- 珠海格力職業(yè)學院《外科學Ⅱ》2023-2024學年第一學期期末試卷
- 重慶青年職業(yè)技術學院《高等天然藥物化學》2023-2024學年第一學期期末試卷
- 中華女子學院《運動控制系統(tǒng)》2023-2024學年第一學期期末試卷
- 2024年軟件資格考試信息系統(tǒng)運行管理員(初級)(基礎知識、應用技術)合卷試卷及解答參考
- 第8課《列夫-托爾斯泰》公開課一等獎創(chuàng)新教學設計
- 人教版2024-2025學年七年級數(shù)學上冊計算題專項訓專題09運用運算律簡便運算(計算題專項訓練)(學生版+解析)
- GB 26134-2024乘用車頂部抗壓強度
- 2024年高中生物新教材同步必修第二冊學習筆記第3章 本章知識網(wǎng)絡
- (正式版)YS∕T 5040-2024 有色金屬礦山工程項目可行性研究報告編制標準
- 2024版軟包合同模板
- GB/T 36548-2024電化學儲能電站接入電網(wǎng)測試規(guī)程
- NB-T+31010-2019陸上風電場工程概算定額
- JT-T-617.7-2018危險貨物道路運輸規(guī)則第7部分:運輸條件及作業(yè)要求
- 2024土方運輸居間合同范本
評論
0/150
提交評論