版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西欽州市浦北縣2024年高三上數(shù)學期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于圓周率π,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數(shù)對;再統(tǒng)計兩數(shù)能與構成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)估計的值,那么可以估計的值約為()A. B. C. D.2.已知函數(shù),且),則“在上是單調函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件3.已知數(shù)列的通項公式是,則()A.0 B.55 C.66 D.784.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或85.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為()A.0 B.1 C.2 D.36.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.7.在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?()A. B. C. D.8.在三角形中,,,求()A. B. C. D.9.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.2510.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.811.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.312.已知是虛數(shù)單位,若,,則實數(shù)()A.或 B.-1或1 C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.在二項式的展開式中,的系數(shù)為________.14.在中,內角所對的邊分別是,若,,則__________.15.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數(shù)=____。16.實數(shù)滿足,則的最大值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.18.(12分)第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關法規(guī)宣傳普及的關系,對某試點社區(qū)抽取戶居民進行調查,得到如下的列聯(lián)表.分類意識強分類意識弱合計試點后試點前合計已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關?說明你的理由;(2)已知在試點前分類意識強的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點前分類意識強的戶居民中,隨機選出戶進行自覺垃圾分類年限的調查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學期望.參考公式:,其中.下面的臨界值表僅供參考19.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,,四邊形ABCD內接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.20.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.21.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.22.(10分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實數(shù)取何值,直線恒過定點,并求出該定點的坐標;(2)若直線經(jīng)過點,試判斷函數(shù)的零點個數(shù)并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由試驗結果知對0~1之間的均勻隨機數(shù),滿足,面積為1,再計算構成鈍角三角形三邊的數(shù)對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據(jù)題意知,名同學取對都小于的正實數(shù)對,即,對應區(qū)域為邊長為的正方形,其面積為,若兩個正實數(shù)能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規(guī)劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據(jù)題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.2、C【解析】
先求出復合函數(shù)在上是單調函數(shù)的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調遞減,單調遞增,在上是單調函數(shù),其充要條件為即.故選:C.【點睛】本題考查了復合函數(shù)的單調性的判斷問題,充要條件的判斷,屬于基礎題.3、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計算出的值,可進一步得到數(shù)列的通項公式,然后代入轉化計算,再根據(jù)等差數(shù)列求和公式計算出結果.【詳解】解:由題意得,當為奇數(shù)時,,當為偶數(shù)時,所以當為奇數(shù)時,;當為偶數(shù)時,,所以故選:D【點睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質應用,等差數(shù)列的求和公式,屬于中檔題.4、B【解析】
根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結果.【詳解】函數(shù),若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質和函數(shù)的對稱性問題,屬基礎題5、C【解析】
設,則,則,即可得,設,利用導函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設,則,所以,依題意可得,設,則,當時,,則單調遞減;當時,,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導函數(shù)處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.6、B【解析】
設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結合的面積求得的值,結合焦點弦長公式可求得.【詳解】設點、,并設直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.7、D【解析】
設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數(shù)列,,結合等比數(shù)列的性質可求出答案.【詳解】設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數(shù)列,且公比,則,故,,.故選:D.【點睛】本題考查數(shù)列與數(shù)學文化,考查了等比數(shù)列的性質,考查了學生的運算求解能力,屬于基礎題.8、A【解析】
利用正弦定理邊角互化思想結合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應用,考查計算能力,屬于中等題.9、C【解析】
通過二項式展開式的通項分析得到,即得解.【詳解】由已知得,故當時,,于是有,則.故選:C【點睛】本題主要考查二項式展開式的通項和系數(shù)問題,意在考查學生對這些知識的理解掌握水平.10、C【解析】
設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數(shù)的值.本題難度一般.11、C【解析】
對于①中,根據(jù)指數(shù)冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數(shù),利用導數(shù)得到函數(shù)為單調遞增函數(shù),進而得到,即可判定是錯誤的;對于③中,構造新函數(shù),利用導數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質,可得成立,所以是正確的;對于②中,設函數(shù),則,所以函數(shù)為單調遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設函數(shù),則,當時,,函數(shù)單調遞增,當時,,函數(shù)單調遞減,所以當時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數(shù)在函數(shù)中的綜合應用,其中解答中根據(jù)題意,合理構造新函數(shù),利用導數(shù)求得函數(shù)的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.12、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數(shù)的運算,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】
直接利用二項式定理計算得到答案.【詳解】二項式的展開式通項為:,取,則的系數(shù)為.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力和應用能力.14、【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關系式,考查兩角和的正弦公式,考查三角形的內角和定理,屬于中檔題.15、或1【解析】
利用導數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或?!军c睛】本題主要考查利用導數(shù)求切線方程,以及直線方程的運用,三角形的面積求法。16、.【解析】
畫出可行域,解出可行域的頂點坐標,代入目標函數(shù)求出相應的數(shù)值,比較大小得到目標函數(shù)最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規(guī)劃的線性目標函數(shù)的最優(yōu)解問題.線性目標函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數(shù)求出相應的數(shù)值,從而確定目標函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,詳見解析【解析】
(1)根據(jù)長軸長為,離心率,則有求解.(2)設,則,直線,令得,,則,直線,令,得,則,再根據(jù)求解.【詳解】(1)依題意得,解得,則橢圓的方程.(2)設,則,直線,令得,,則,直線,令,得,則,.【點睛】本題主要考查橢圓的方程及直線與橢圓的位置關系,還考查了平面幾何知識和運算求解的能力,屬于中檔題.18、(1)有的把握認為居民分類意識強與政府宣傳普及工作有很大關系.見解析(2)分布列見解析,期望為1.【解析】
(1)由在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為可得列聯(lián)表,然后計算后可得結論;(2)由已知的取值分別為,分別計算概率得分布列,由公式計算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機抽取戶,到分類意識強的概率為,可得分類意識強的有戶,故可得列聯(lián)表如下:分類意識強分類意識弱合計試點后試點前合計因為的觀測值,所以有的把握認為居民分類意識強與政府宣傳普及工作有很大關系.(2)現(xiàn)在從試點前分類意識強的戶居民中,選出戶進行自覺垃圾分類年限的調查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,,,,則的分布列為.【點睛】本題考查獨立性檢驗,考查隨機變量的概率分布列和數(shù)學期望.考查學生的數(shù)據(jù)處理能力和運算求解能力.19、(1)(2)證明見解析【解析】
(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,,因為,所以可設直線CD的方程為,將直線代入曲線的方程,利用韋達定理得到的關系,再代入斜率公式可證得為定值.【詳解】(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值.所以,所以,,故橢圓E的標準方程為.(2)根據(jù)題意可知,,因為,所以可設直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.【點睛】本題考查橢圓標準方程的求解、橢圓中的定值問題,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標法的運用.20、(1);(2);(2)見解析.【解析】
(1)由圓的方程求出點坐標,得雙曲線的,再計算出后可得漸近線方程;(2)設,由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標,計算;(3)由已知得,設,由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設,由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設由得:,,由得,解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吸引小學生的英語課件
- 法制培訓課件名稱
- 生產(chǎn)安全宣講課件
- 小學生美術課件制作視頻
- 消防教學培訓課件
- 七年級科學上冊9.2家庭用電9.2.4家庭用電的安全措施學案無答案牛津上海版
- 三年級數(shù)學上冊第3單元圖形的運動一3.4有趣的剪紙課時練冀教版
- 三年級科學上冊第二單元我們怎么知道第七課它是什么教案青島版
- 道路安全生產(chǎn)課件講義
- 上半年大一學生會工作參考計劃范文
- 冷庫安全操作規(guī)程培訓
- 省級非急救醫(yī)療轉運管理規(guī)范
- 課程設計DLP4-13型鍋爐中硫煙煤煙氣袋式除塵濕式脫硫系統(tǒng)設計
- 煤泥綜合利用的可行性研究報告
- 三年級《剪窗花》課件
- 學前兒童發(fā)展心理學(高職)全套教學課件
- 四川省自貢市2022-2023學年八年級上學期期末語文試題
- 中國各省省會-地級市-縣級市明細表-
- 變曲率雙向可調收縫式翻升模板施工工法
- 教你炒紅爐火版00纏論大概
- 消防管道施工合同
評論
0/150
提交評論