![浙江省紹興市紹興一中2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁](http://file4.renrendoc.com/view10/M00/3C/1D/wKhkGWWedzKAIxerAAHL--OpkAU384.jpg)
![浙江省紹興市紹興一中2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁](http://file4.renrendoc.com/view10/M00/3C/1D/wKhkGWWedzKAIxerAAHL--OpkAU3842.jpg)
![浙江省紹興市紹興一中2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁](http://file4.renrendoc.com/view10/M00/3C/1D/wKhkGWWedzKAIxerAAHL--OpkAU3843.jpg)
![浙江省紹興市紹興一中2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁](http://file4.renrendoc.com/view10/M00/3C/1D/wKhkGWWedzKAIxerAAHL--OpkAU3844.jpg)
![浙江省紹興市紹興一中2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁](http://file4.renrendoc.com/view10/M00/3C/1D/wKhkGWWedzKAIxerAAHL--OpkAU3845.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省紹興市紹興一中2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,是平面,m,n是直線,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則2.已知,函數(shù)的最小值是()A.4 B.5 C.8 D.63.一幾何體的三視圖如圖所示,則該幾何體的表面積為()A.16 B.20 C.24 D.284.已知,,那么是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.某校有高一學(xué)生人,高二學(xué)生人,高三學(xué)生人,現(xiàn)教育局督導(dǎo)組欲用分層抽樣的方法抽取名學(xué)生進行問卷調(diào)查,則下列判斷正確的是()A.高一學(xué)生被抽到的可能性最大 B.高二學(xué)生被抽到的可能性最大C.高三學(xué)生被抽到的可能性最大 D.每位學(xué)生被抽到的可能性相等6.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.7.已知直線l的方程是y=2x+3,則l關(guān)于y=-x對稱的直線方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=08.下列四個函數(shù)中,既是上的增函數(shù),又是以為周期的偶函數(shù)的是()A. B. C. D.9.已知,則點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如圖,設(shè)A、B兩點在河的兩岸,一測量者在A的同側(cè),在所在河岸邊選定一點C,測出AC的距離為502m,∠ACB=45°,∠CAB=105A.100m B.50C.1002m二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)集合,它共有個二元子集,如、、等等.記這個二元子集為、、、、,設(shè),定義,則_____.(結(jié)果用數(shù)字作答)12.設(shè)x、y滿足約束條件,則的取值范圍是______.13.已知P1(x1,y1),P2(x2,y2)是以原點O為圓心的單位圓上的兩點,∠P1OP2=θ(θ為鈍角).若,則x1x2+y1y2的值為_____.14.若(),則_______(結(jié)果用反三角函數(shù)值表示).15.如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.①存在點,使得//平面;②對于任意的點,平面平面;③存在點,使得平面;④對于任意的點,四棱錐的體積均不變.16.函數(shù)的最小正周期為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,已知向量,.(1)求證:且;(2)設(shè)向量,,且,求實數(shù)的值.18.已知(1)求的值;(2)求的值.19.已知函數(shù).(1)求的最小正周期及單調(diào)遞減區(qū)間;(2)若,且,求的值.20.已知函數(shù).(1)求證函數(shù)在上是單調(diào)減函數(shù).(2)求函數(shù)在上的值域.21.求適合下列條件的直線方程:經(jīng)過點,傾斜角等于直線的傾斜角的倍;經(jīng)過點,且與兩坐標(biāo)軸圍成一個等腰直角三角形。
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
由題意找到反例即可確定錯誤的選項.【題目詳解】如圖所示,在正方體中,取直線m為,平面為,滿足,取平面為平面,則的交線為,很明顯m和n為異面直線,不滿足,選項D錯誤;如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以A正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以B正確;由A選項和面面垂直的判定定理可得C也正確.本題答案為D.【題目點撥】本題主要考查線面關(guān)系有關(guān)命題真假的判斷,意在考查學(xué)生的轉(zhuǎn)化能力和邏輯推理能力,屬基礎(chǔ)題.2、A【解題分析】試題分析:由題意可得,滿足運用基本不等式的條件——一正,二定,三相等,所以,故選A考點:利用基本不等式求最值;3、B【解題分析】
根據(jù)三視圖可還原幾何體,根據(jù)長度關(guān)系依次計算出各個側(cè)面和上下底面的面積,加和得到表面積.【題目詳解】有三視圖可得幾何體的直觀圖如下圖所示:其中:,,,則:,,,,幾何體表面積:本題正確選項:【題目點撥】本題考查幾何體表面積的求解問題,關(guān)鍵是能夠根據(jù)三視圖準(zhǔn)確還原幾何體,從而根據(jù)長度關(guān)系可依次計算出各個面的面積.4、C【解題分析】
根據(jù),,可判斷所在象限.【題目詳解】,在三四象限.,在一三象限,故在第三象限答案為C【題目點撥】本題考查了三角函數(shù)在每個象限的正負(fù),屬于基礎(chǔ)題型.5、D【解題分析】
根據(jù)分層抽樣是等可能的選出正確答案.【題目詳解】由于分層抽樣是等可能的,所以每位學(xué)生被抽到的可能性相等,故選D.【題目點撥】本小題主要考查隨機抽樣的公平性,考查分層抽樣的知識,屬于基礎(chǔ)題.6、A【解題分析】
分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉(zhuǎn)化為函數(shù)求最值。7、A【解題分析】將x=-y,y=-x代入方程y=2x+3中,得所求對稱的直線方程為-x=-2y+3,即x-2y+3=0.8、C【解題分析】
本題首先可確定四個選項中的函數(shù)的周期性以及在區(qū)間上的單調(diào)性、奇偶性,然后根據(jù)題意即可得出結(jié)果.【題目詳解】A項:函數(shù)周期為,在上是增函數(shù),奇函數(shù);B項:函數(shù)周期為,在上是減函數(shù),偶函數(shù);C項:函數(shù)周期為,在上是增函數(shù),偶函數(shù);D項:函數(shù)周期為,在上是減函數(shù),偶函數(shù);綜上所述,故選C.【題目點撥】本題考查三角函數(shù)的周期性以及單調(diào)性,能否熟練的掌握正弦函數(shù)以及余弦函數(shù)的圖像性質(zhì)是解決本題的關(guān)鍵,考查推理能力,是簡單題.9、B【解題分析】∵,∴,,,∴,∴點在第二象限,故選B.點睛:本題主要考查了由三角函數(shù)值的符號判斷角的終邊位置,屬于基礎(chǔ)題;三角函數(shù)值符號記憶口訣記憶技巧:一全正、二正弦、三正切、四余弦(為正).即第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.10、A【解題分析】
計算出ΔABC三個角的值,然后利用正弦定理可計算出AB的值.【題目詳解】在ΔABC中,AC=502m,∠ACB=45°,由正弦定理得ABsin∠ACB=ACsin【題目點撥】本題考查正弦定理解三角形,要熟悉正弦定理解三角形對三角形已知元素類型的要求,考查運算求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1835028【解題分析】
分別分析中二元子集中較大元素分別為、、、時,對應(yīng)的二元子集中較小的元素,再利用題中的定義結(jié)合數(shù)列求和思想求出結(jié)果.【題目詳解】當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、、、.由題意可得,令,得,上式下式得,化簡得,因此,,故答案為:.【題目點撥】本題考查新定義,同時也考查了數(shù)列求和,解題的關(guān)鍵就是找出相應(yīng)的規(guī)律,列出代數(shù)式進行計算,考查運算求解能力,屬于難題.12、【解題分析】
由約束條件可得可行域,將問題轉(zhuǎn)化為在軸截距取值范圍的求解;通過直線平移可確定的最值點,代入點的坐標(biāo)可求得最值,進而得到取值范圍.【題目詳解】由約束條件可得可行域如下圖陰影部分所示:將的取值范圍轉(zhuǎn)化為在軸截距的取值范圍問題由平移可知,當(dāng)過圖中兩點時,在軸截距取得最大和最小值,,的取值范圍為故答案為:【題目點撥】本題考查線性規(guī)劃中的取值范圍問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化成直線在軸截距的取值范圍的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.13、-【解題分析】
先利用平面向量數(shù)量積的定義和坐標(biāo)運算得到,再利用兩角和的正弦公式和平方關(guān)系進行求解.【題目詳解】根據(jù)題意知,又P1,P2在單位圓上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ為鈍角,聯(lián)立①②求得cosθ=-.【題目點撥】本題主要考查平面向量的數(shù)量積定義和坐標(biāo)運算、兩角和的正弦公式,意在考查學(xué)生的邏輯思維能力和基本運算能力,屬于中檔題.14、【解題分析】
根據(jù)反三角函數(shù)以及的取值范圍,求得的值.【題目詳解】由于,所以,所以.故答案為:【題目點撥】本小題主要考查已知三角函數(shù)值求角,考查反三角函數(shù),屬于基礎(chǔ)題.15、①②④【解題分析】
根據(jù)線面平行和線面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進行判斷即可.【題目詳解】①當(dāng)為棱上的一中點時,此時也為棱上的一個中點,此時//,滿足//平面,故①正確;②連結(jié),則平面,因為平面,所以平面平面,故②正確;③平面,不可能存在點,使得平面,故③錯誤;④四棱錐的體積等于,設(shè)正方體的棱長為1.∵無論、在何點,三角形的面積為為定值,三棱錐的高,保持不變,三角形的面積為為定值,三棱錐的高為,保持不變.∴四棱錐的體積為定值,故④正確.故答案為①②④.【題目點撥】本題主要考查空間直線和平面平行或垂直的位置關(guān)系的判斷,解答本題的關(guān)鍵正確利用分割法求空間幾何體的體積的方法,綜合性較強,難度較大.16、【解題分析】
將三角函數(shù)進行降次,然后通過輔助角公式化為一個名稱,最后利用周期公式得到結(jié)果.【題目詳解】,.【題目點撥】本題主要考查二倍角公式,及輔助角公式,周期的運算,難度不大.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】
(1)根據(jù)向量的坐標(biāo)求出向量模的方法以及向量的數(shù)量積即可求解.(2)根據(jù)向量垂直,可得數(shù)量積等于,進而解方程即可求解.【題目詳解】(1)證明:,,所以,因為,所以;(2)因為,所以,由(1)得:所以,解得.【題目點撥】本題考查了向量坐標(biāo)求向量的模以及向量數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.18、(1)20,(2)【解題分析】
(1)先利用同角三角函數(shù)的基本關(guān)系求得cos和tan的值,進而利用二倍角公式把sin2展開,把sin和cos的值代入即可.(2)先利用誘導(dǎo)公式使=tan(﹣),再利用正切的兩角和公式展開后,把tanα的值代入即可求得答案.【題目詳解】(1)由,得,所以=(2)∵,∴【題目點撥】本題主要考查了三角函數(shù)的化簡求值的問題.要求學(xué)生能靈活運用三角函數(shù)的基本公式.19、(1)最小正周期為,單調(diào)遞減區(qū)間為(2).【解題分析】
(1)利用二倍角降冪公式和輔助角公式將函數(shù)的解析式化為,利用周期公式可得出函數(shù)的最小正周期,然后解不等式可得出函數(shù)的單調(diào)遞減區(qū)間;(2)由可得出角的值,再利用兩角和的正切公式可計算出的值.【題目詳解】(1).函數(shù)的最小正周期為,令,解得.所以,函數(shù)的單調(diào)遞減區(qū)間為;(2),即,,.,故,因此.【題目點撥】本題考查三角函數(shù)基本性質(zhì),考查兩角和的正切公式求值,解題時要利用三角恒等變換思想將三角函數(shù)的解析式化簡,利用正弦、余弦函數(shù)的性質(zhì)求解,考查運算求解能力,屬于中等題.20、(1)證明見解析(2)【解題分析】
(1)直接用定義法證明函數(shù)的單調(diào)性.
(2)利用(1)的單調(diào)性結(jié)論可求函數(shù)在上的值域【題目詳解】(1)證明:任取,且則由,且,則,所以所以所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建立高效的財務(wù)業(yè)務(wù)運作模式
- 2025年全球及中國工業(yè)級4-芐氧基苯酚行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國石墨片保護膜行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國消費電子NFC天線行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國旅游廣告和營銷服務(wù)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球非侵入式血流動力學(xué)監(jiān)測解決方案行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國光伏舟托行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國晶須碳納米管行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國溴化鈣粉行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球高壓鎳氫電池行業(yè)調(diào)研及趨勢分析報告
- 2025年度新能源汽車充電站運營權(quán)轉(zhuǎn)讓合同樣本4篇
- 第5課 隋唐時期的民族交往與交融 課件(23張) 2024-2025學(xué)年統(tǒng)編版七年級歷史下冊
- 四年級數(shù)學(xué)下冊口算天天練45
- 雕塑采購?fù)稑?biāo)方案(技術(shù)標(biāo))
- 北京房地產(chǎn)典當(dāng)合同書
- 文學(xué)類文本閱讀 高一語文統(tǒng)編版暑假作業(yè)
- 文明施工考核標(biāo)準(zhǔn)
- 《霧都孤兒人物分析4000字(論文)》
- MZ/T 039-2013老年人能力評估
- GB/T 6329-1996膠粘劑對接接頭拉伸強度的測定
- 2023年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(語文)試題庫含答案解析
評論
0/150
提交評論