版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆江蘇省常州市常州中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最大值為A.4 B.5 C.6 D.72.已知,,,則的最小值為A. B. C. D.43.設(shè)向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件4.如圖是一圓錐的三視圖,正視圖和側(cè)視圖都是頂角為120°的等腰三角形,若過該圓錐頂點S的截面三角形面積的最大值為2,則該圓錐的側(cè)面積為A. B. C. D.45.在中,若則等于()A. B. C. D.6.的值為()A. B. C. D.7.若正實數(shù)滿足,則的最小值為A. B. C. D.8.在中,角所對的邊分邊為,已知,則此三角形的解的情況是()A.有一解 B.有兩解 C.無解 D.有解但解的個數(shù)不確定9.在中,角A、B、C所對的邊分別為a、b、c,若a、b、c成等比數(shù)列,且,則()A. B. C. D.10.在學(xué)習(xí)等差數(shù)列時,我們由,,,,得到等差數(shù)列的通項公式是,象這樣由特殊到一般的推理方法叫做()A.不完全歸納法 B.?dāng)?shù)學(xué)歸納法 C.綜合法 D.分析法二、填空題:本大題共6小題,每小題5分,共30分。11.如圖是一個算法的流程圖,則輸出的的值是________.12.函數(shù)的圖像可由函數(shù)的圖像至少向右平移________個單位長度得到.13.若函數(shù)圖象各點的橫坐標(biāo)縮短為原來的一半,再向左平移個單位,得到的函數(shù)圖象離原點最近的的對稱中心是______.14.秦九韶是我國南宋著名數(shù)學(xué)家,在他的著作《數(shù)書九章》中有己知三邊求三角形面積的方法:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上以小斜冪乘大斜冪減上,余四約之,為實一為從陽,開平方得積.”如果把以上這段文字寫成公式就是,其中是的內(nèi)角的對邊為.若,且,則面積的最大值為________.15.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為.16.已知直線與圓交于兩點,過分別作的垂線與軸交于兩點,則_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:月份123456銷售量x(萬件)1011131286利潤y(萬元)222529261612附:(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認(rèn)為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,)18.在中,已知,其中角所對的邊分別為.求(1)求角的大??;(2)若,的面積為,求的值.19.在銳角中,角,,的對邊分別為,,,若.(1)求角;(2)若,則周長的取值范圍.20.已知向量,的夾角為120°,且||=2,||=3,設(shè)32,2.(Ⅰ)若⊥,求實數(shù)k的值;(Ⅱ)當(dāng)k=0時,求與的夾角θ的大?。?1.在中,的對邊分別為,已知.(1)求的值;(2)若的面積為,,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】試題分析:因為,而,所以當(dāng)時,取得最大值5,選B.【考點】正弦函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)【名師點睛】求解本題易出現(xiàn)的錯誤是認(rèn)為當(dāng)時,函數(shù)取得最大值.2、C【解題分析】
化簡條件得,化簡,利用基本不等式,即可求解,得到答案.【題目詳解】由題意,知,可得,則,當(dāng)且僅當(dāng)時,即時取得等號,所以,即的最小值為,故選C.【題目點撥】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件:一正、二定、三相等是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、C【解題分析】
利用向量共線的性質(zhì)求得,由充分條件與必要條件的定義可得結(jié)論.【題目詳解】因為向量,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【題目點撥】本題主要考查向量共線的性質(zhì)、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.4、B【解題分析】
過該圓錐頂點S的截面三角形面積最大是直角三角形,根據(jù)面積為2求出圓錐的母線長,再根據(jù)正視圖求圓錐底面圓的半徑,最后根據(jù)扇形面積公式求圓錐的側(cè)面積.【題目詳解】過該圓錐頂點S的截面三角形面積最直角三角形,設(shè)圓錐的母線長和底面圓的半徑分別為,則,即,又,所以圓錐的側(cè)面積;故選B.【題目點撥】本題考查三視圖及圓錐有關(guān)計算,此題主要難點在于判斷何時截面三角形面積最大,要結(jié)合三角形的面積公式,當(dāng),即截面是等腰直角三角時面積最大.5、D【解題分析】
由正弦定理,求得,再由,且,即可求解,得到答案.【題目詳解】由題意,在中,由正弦定理可得,即,又由,且,所以或,故選D.【題目點撥】本題主要考查了正弦定理的應(yīng)用,其中解答中熟記三角形的正弦定理,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、C【解題分析】試題分析:.考點:誘導(dǎo)公式.7、D【解題分析】
將變成,可得,展開后利用基本不等式求解即可.【題目詳解】,,,,當(dāng)且僅當(dāng),取等號,故選D.【題目點撥】本題主要考查利用基本不等式求最值,屬于中檔題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用或時等號能否同時成立).8、C【解題分析】由三角形正弦定理可知無解,所以三角形無解,選C.9、A【解題分析】
先由a、b、c成等比數(shù)列,得到,再由題中條件,結(jié)合余弦定理,即可求出結(jié)果.【題目詳解】解:a、b、c成等比數(shù)列,所以,?所以,由余弦定理可知,又,所以.故選A.【題目點撥】本題主要考查解三角形,熟記余弦定理即可,屬于??碱}型.10、A【解題分析】
根據(jù)題干中的推理由特殊到一般的推理屬于歸納推理,但又不是數(shù)學(xué)歸納法,從而可得出結(jié)果.【題目詳解】本題由前三項的規(guī)律猜想出一般項的特點屬于歸納法,但本題并不是數(shù)學(xué)歸納法,因此,本題中的推理方法是不完全歸納法,故選:A.【題目點撥】本題考查歸納法的特點,判斷時要區(qū)別數(shù)學(xué)歸納法與不完全歸納法,考查對概念的理解,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】由程序框圖,得運行過程如下:;,結(jié)束循環(huán),即輸出的的值是7.12、【解題分析】試題分析:因為,所以函數(shù)的的圖像可由函數(shù)的圖像至少向右平移個單位長度得到.【考點】三角函數(shù)圖像的平移變換、兩角差的正弦公式【誤區(qū)警示】在進(jìn)行三角函數(shù)圖像變換時,提倡“先平移,后伸縮”,但“先伸縮,后平移”也經(jīng)常出現(xiàn)在題目中,所以也必須熟練掌握,無論是哪種變形,切記每一個變換總是對字母而言,即圖像變換要看“變量”變化多少,而不是“角”變化多少.13、【解題分析】
由二倍角公式化簡函數(shù)式,然后由三角函數(shù)圖象變換得新解析式,結(jié)合正弦函數(shù)性質(zhì)得對稱中心.【題目詳解】由題意,經(jīng)過圖象變換后新函數(shù)解析式為,由,,,絕對值最小的是,因此所求對稱中心為.故答案為:.【題目點撥】本題考查三角函數(shù)的圖象變換,考查正弦函數(shù)的性質(zhì),考查二倍角公式,掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.14、【解題分析】
根據(jù)正弦定理和余弦定理,由可得,再由及函數(shù)求最值的知識,即可求解.【題目詳解】,又,,時,面積的最大值為.故答案為:【題目點撥】本題主要考查了正弦定理、余弦定理在解三角形中的應(yīng)用,考查了理解辨析能力與運算求解能力,屬于中檔題.15、【解題分析】該幾何體是由兩個高為1的圓錐與一個高為2的圓柱組合而成,所以該幾何體的體積為.考點:本題主要考查三視圖及幾何體體積的計算.16、【解題分析】
聯(lián)立直線的方程和圓的方程,求得兩點的坐標(biāo),根據(jù)點斜式求得直線的方程,進(jìn)而求得兩點的坐標(biāo),由此求得的長.【題目詳解】由解得,直線的斜率為,所以直線的斜率為,所以,令,得,所以.故答案為4【題目點撥】本小題主要考查直線和圓的位置關(guān)系,考查相互垂直的兩條直線斜率的關(guān)系,考查直線的點斜式方程,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解題分析】
(1)求出,由公式,得的值,從而求出的值,從而得到關(guān)于的線性回歸方程;(2)將月份和月份的銷售量值代入回歸直線方程,求出預(yù)測值,并計算預(yù)測值與實際值之間的誤差,結(jié)合題意來判斷(1)中所得回歸直線方程是否理想?!绢}目詳解】(1)計算得,,,則,;故關(guān)于的回歸直線方程為.(2)當(dāng)時,,此時;當(dāng)時,,此時.故所得的回歸直線方程是理想的.【題目點撥】本題考查回歸直線方程的應(yīng)用,解題的關(guān)鍵就是弄清楚最小二乘法公式,并準(zhǔn)確代入數(shù)據(jù)計算,著重考察計算能力,屬于中等題。18、(1);(2)1.【解題分析】試題分析:(1)利用正弦定理角化邊,結(jié)合三角函數(shù)的性質(zhì)可得;(2)由△ABC的面積可得,由余弦定理可得,結(jié)合正弦定理可得:的值是1.試題解析:(1)由正弦定理,得,∵,∴.即,而∴,則(2)由,得,由及余弦定理得,即,所以.19、(1)(2)【解題分析】
(1)利用切化成弦和余弦定理對等式進(jìn)行化簡,得角的正弦值;(2)利用成正弦定理把邊化成角,從而實現(xiàn)的周長用角B的三角函數(shù)進(jìn)行表示,即周長,再根據(jù)銳角三角形中角,求得函數(shù)值域.【題目詳解】(1)由,得到,又,所以.(2),,設(shè)周長為,由正弦定理知,由合分比定理知,即,,即.又因為為銳角三角形,所以.,周長.【題目點撥】對運動變化問題,首先要明確變化的量是什么?或者選定什么量為變量?然后,利用函數(shù)與方程思想,把所求的目標(biāo)表示成關(guān)于變量的函數(shù),再研究函數(shù)性質(zhì)進(jìn)行問題求解.20、(Ⅰ)(Ⅱ)【解題分析】
(Ⅰ)利用⊥,結(jié)合向量的數(shù)量積的運算公式,得到關(guān)于的方程,即可求解;(Ⅱ)當(dāng)時,利用向量的數(shù)量積的運算公式,以及向量的夾角公式,即可求解.【題目詳解】(Ⅰ)由題意,向量,的夾角為120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)當(dāng)k=0時,,則.因為,由向量的夾角公式,可得,又因為0≤θ≤π,∴,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 離婚協(xié)議書的樣本范本2024年
- 個人貸款委托協(xié)議范本
- 重癥肌無力護(hù)理查房
- 房屋抵債協(xié)商書
- 物業(yè)廣告位租賃協(xié)議
- 房屋建設(shè)合同大全
- 2024年柴油危險品運輸合同
- 2024年食堂轉(zhuǎn)讓協(xié)議書
- 2024年雙方債權(quán)債務(wù)轉(zhuǎn)讓協(xié)議書
- 賓館轉(zhuǎn)手合同樣本
- 人教版九年級物理全一冊課件【全冊】
- 顱內(nèi)動脈瘤栓塞術(shù)課件
- 《鄉(xiāng)土中國》非連續(xù)性文本閱讀試題模擬練-2023屆高考語文備考復(fù)習(xí)
- 《國畫》課程標(biāo)準(zhǔn)
- 學(xué)校傳染病控制
- 建筑工程初中級職稱考試法律法規(guī)復(fù)習(xí)題(含答案)
- 新花大道(花都大道~迎賓大道)工程 設(shè)計說明
- 運動鞋服領(lǐng)域:貴人鳥企業(yè)組織結(jié)構(gòu)及部門職責(zé)
- LB/T 073-2019旅行社旅游產(chǎn)品質(zhì)量優(yōu)化要求
- GB/T 7974-2013紙、紙板和紙漿藍(lán)光漫反射因數(shù)D65亮度的測定(漫射/垂直法室外日光條件)
- GB/T 6582-2021玻璃玻璃顆粒在98℃時的耐水性試驗方法和分級
評論
0/150
提交評論