2024屆黑龍江省伊春市南岔區(qū)伊春二中數(shù)學(xué)高一下期末考試試題含解析_第1頁
2024屆黑龍江省伊春市南岔區(qū)伊春二中數(shù)學(xué)高一下期末考試試題含解析_第2頁
2024屆黑龍江省伊春市南岔區(qū)伊春二中數(shù)學(xué)高一下期末考試試題含解析_第3頁
2024屆黑龍江省伊春市南岔區(qū)伊春二中數(shù)學(xué)高一下期末考試試題含解析_第4頁
2024屆黑龍江省伊春市南岔區(qū)伊春二中數(shù)學(xué)高一下期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆黑龍江省伊春市南岔區(qū)伊春二中數(shù)學(xué)高一下期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的前項和為,則()A. B. C. D.2.已知,若,則等于()A. B.1 C.2 D.3.設(shè)函數(shù)(為常實數(shù))在區(qū)間上的最小值為,則的值等于()A.4 B.-6 C.-3 D.-44.已知M為z軸上一點,且點M到點與點的距離相等,則點M的坐標為()A. B. C. D.5.已知,,,,則()A. B.C. D.6.某班有男生30人,女生20人,按分層抽樣方法從班級中選出5人負責校園開放日的接待工作.現(xiàn)從這5人中隨機選取2人,至少有1名男生的概率是()A. B. C. D.7.函數(shù)的最小正周期是()A. B. C. D.8.若直線上存在點滿足則實數(shù)的最大值為A. B. C. D.9.已知在中,,則的形狀是A.銳角三角形 B.鈍角三角形C.等腰三角形 D.直角三角形10.將函數(shù)y=sinx-πA.y=sin1C.y=sin1二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,,則_________.12.在數(shù)列中,,,,則_____________.13.等差數(shù)列前項和為,已知,,則_____.14.已知兩個正實數(shù)x,y滿足=2,且恒有x+2y﹣m>0,則實數(shù)m的取值范圍是______________15.弧度制是數(shù)學(xué)上一種度量角的單位制,數(shù)學(xué)家歐拉在他的著作《無窮小分析概論》中提出把圓的半徑作為弧長的度量單位.已知一個扇形的弧長等于其半徑長,則該扇形圓心角的弧度數(shù)是__________.16.一個三角形的三條邊成等比數(shù)列,那么,公比q的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.做一個體積為,高為2m的長方體容器,問底面的長和寬分別為多少時,所用的材料表面積最少?并求出其最小值.18.已知函數(shù)的最小正周期為,將的圖象向右平移個單位長度,再向上平移個單位長度得到函數(shù)的圖象.(1)求函數(shù)的解析式;(2)在中,角所對的邊分別為,若,且,求周長的取值范圍.19.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,求的值.20.化簡求值:(1)化簡:(2)求值,已知,求的值21.如圖,在直四棱柱中,底面為等腰梯形,,,,,??分別是??的中點.(1)證明:直線平面;(2)求直線與面所成角的大小;(3)求二面角的平面角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

利用等差數(shù)列的求和公式及性質(zhì)即可得到答案.【題目詳解】由于,根據(jù)等差數(shù)列的性質(zhì),,故選C.【題目點撥】本題主要考查等差數(shù)列的性質(zhì)與求和,難度不大.2、A【解題分析】

首先根據(jù)?(cos﹣3)cos+sin(sin﹣3)=﹣1,并化簡得出,再化為Asin()形式即可得結(jié)果.【題目詳解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化簡得,即sin()=,則sin()=故選A.【題目點撥】本題考查了三角函數(shù)的化簡求值以及向量的數(shù)量積的運算,屬于基礎(chǔ)題.3、D【解題分析】試題分析:,,,當時,,故.考點:1、三角恒等變換;2、三角函數(shù)的性質(zhì).4、C【解題分析】

根據(jù)題意先設(shè),再根據(jù)空間兩點間的距離公式,得到,再由點M到點與點的距離相等建立方程求解.【題目詳解】設(shè)根據(jù)空間兩點間的距離公式得因為點M到點與點的距離相等所以解得所以故選:C【題目點撥】本題主要考查了空間兩點間的距離公式,還考查了運算求解的能力,屬于基礎(chǔ)題.5、C【解題分析】

分別求出的值再帶入即可.【題目詳解】因為,所以因為,所以所以【題目點撥】本題考查兩角差的余弦公式.屬于基礎(chǔ)題.6、D【解題分析】

由題意,男生30人,女生20人,按照分層抽樣方法從中抽取5人,則男生為人,女生為,從這5人中隨機選取2人,共有種,全是女生的只有1種,所以至少有1名女生的概率為,故選D.7、A【解題分析】

作出函數(shù)的圖象可得出該函數(shù)的最小正周期。【題目詳解】作出函數(shù)的圖象如下圖所示,由圖象可知,函數(shù)的最小正周期為,故選:A。【題目點撥】本題考查三角函數(shù)周期的求解,一般而言,三角函數(shù)最小正周期的求解方法有如下幾種:(1)定義法:即;(2)公式法:當時,函數(shù)或的最小正周期為,函數(shù)最小正周期為;(3)圖象法。8、B【解題分析】

首先畫出可行域,然后結(jié)合交點坐標平移直線即可確定實數(shù)m的最大值.【題目詳解】不等式組表示的平面區(qū)域如下圖所示,由,得:,即C點坐標為(-1,-2),平移直線x=m,移到C點或C點的左邊時,直線上存在點在平面區(qū)域內(nèi),所以,m≤-1,即實數(shù)的最大值為-1.【題目點撥】本題主要考查線性規(guī)劃及其應(yīng)用,屬于中等題.9、D【解題分析】

利用正弦定理可將已知中的等號兩邊的“邊”轉(zhuǎn)化為它所對角的正弦,再利用余弦定理化簡即得該三角形的形狀.【題目詳解】根據(jù)正弦定理,原式可變形為:所以整理得.故選.【題目點撥】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.10、C【解題分析】

將函數(shù)y=sin(x-π3)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)得到y(tǒng)=sin(12x-π3),再向左平移π3個單位得到的解析式為y=sin(12(x+π3)-二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)向量平行交叉相乘相減等于0即可.【題目詳解】因為兩個向量平行,所以【題目點撥】本題主要考查了向量的平行,即,若則,屬于基礎(chǔ)題.12、5【解題分析】

利用遞推關(guān)系式依次求值,歸納出:an+6=an,再利用數(shù)列的周期性,得解.【題目詳解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.則a2018=a6×336+2=a2=5【題目點撥】本題考查了遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計算能力.13、1【解題分析】

首先根據(jù)、即可求出和,從而求出?!绢}目詳解】,①,②①②得,,即,∴,即,∴,故答案為:1.【題目點撥】本題主要考查了解方程,以及等差數(shù)列的性質(zhì)和前項和。其中等差數(shù)列的性質(zhì):若則比較??迹枥斫庹莆?。14、(-∞,1)【解題分析】

由x+2y(x+2y)()(1),運用基本不等式可得x+2y的最小值,由題意可得m<x+2y的最小值.【題目詳解】兩個正實數(shù)x,y滿足2,則x+2y(x+2y)()(1)(1+2)=1,當且僅當x=2y=2時,上式取得等號,x+2y﹣m>0,即為m<x+2y,由題意可得m<1.故答案為:(﹣∞,1).【題目點撥】本題考查基本不等式的運用:“乘1法”求最值,考查不等式恒成立問題解法,注意運用轉(zhuǎn)化思想,屬于中檔題.15、1【解題分析】設(shè)扇形的弧長和半徑長為,由弧度制的定義可得,該扇形圓心角的弧度數(shù)是.16、【解題分析】

設(shè)三邊按遞增順序排列為,其中.則,即.解得.由q≥1知q的取值范圍是1≤q<.設(shè)三邊按遞減順序排列為,其中.則,即.解得.綜上所述,.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、長和寬均為4m時,最小值為64【解題分析】

利用體積求得ab=16,只需表示出表面積,結(jié)合高為2m,利用基本不等式求出最值即可.【題目詳解】設(shè)底面的長和寬分別為,因為體積為32,高為c=2m,所以底面積為16,即ab=16所用材料的面積S=2ab+2bc+2ca=32+4(a+b),當且僅當a=b=4時取等號,答:當?shù)酌娴拈L和寬均為4m時,所用的材料表面積最少,其最小值為64【題目點撥】與實際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學(xué)模型進行解答.18、(1),(2)【解題分析】

(1)首先根據(jù)周期為,得到,再根據(jù)圖象的平移變換即可得到的解析式.(2)根據(jù)得到,根據(jù)余弦定理得到,根據(jù)基本不等式即可得到,再求周長的取值范圍即可.【題目詳解】(1)周期,,.將的圖象向右平移個單位長度,再向上平移個單位長度得到.所以.(2),.因為,所以,..因為,所以.所以,即,.所以.【題目點撥】本題第一問考查三角函數(shù)的周期和平移變換,第二問考查了余弦定理,同時還考查了基本不等式,屬于中檔題.19、(1)(2)【解題分析】

(1)根據(jù)與正弦定理化簡求解即可.(2)利用余弦定理以及(1)中所得的化簡求解即可.【題目詳解】解:(1),由正弦定理可得,即得,為三角形的內(nèi)角,.(2),由余弦定理,即.解得.【題目點撥】本題主要考查了正余弦定理求解三角形的問題.需要根據(jù)題意用正弦定理邊化角以及選用合適的余弦定理等.屬于基礎(chǔ)題.20、(1);(2)【解題分析】

(1)根據(jù)誘導(dǎo)公式先化簡每一項,然后即可得到最簡結(jié)果;(2)利用“齊次”式的特點,分子分母同除以,將其化簡為關(guān)于的形式即可求值.【題目詳解】(1)原式,(2)原式【題目點撥】本題考查誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系的運用,難度較易.(1)利用誘導(dǎo)公式進行化簡時,掌握“奇變偶不變”的實際含義進行化簡即可;(2)求解形如的“齊次式”的值,注意采用分子分母同除以的方法,將其化簡為關(guān)于的形式再求值.21、(1)證明見解析(2)(3)【解題分析】

(1)取的中點,證明為平行四邊形,且,再由三角形中位線證明,最后由線面平行的判定定理證明即可;(2)作交于點,由線面垂直關(guān)系得到直線與面所成角為,再根據(jù)是正三角形求解即可;(3)由(2)知,平面,再證明和分別垂直于,求出直線與面所成角為,再求出和的長度即可求解.【題目詳解】(1)在直四棱柱中,取的中點,連接,,,因為,,且,所以為平行四邊形,所以,又因為?分別是棱?的中點,所以,所以,因為.所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論