




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省信陽市息縣息縣一中2024屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知角的終邊經(jīng)過點(diǎn),則=()A. B. C. D.2.若,滿足不等式組,則的最小值為()A.-5 B.-4 C.-3 D.-23.已知,,點(diǎn)在內(nèi),且,設(shè),則等于()A. B.3 C. D.4.已知,則下列不等式一定成立的是()A. B. C. D.5.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形6.函數(shù)的圖象如圖所示,則y的表達(dá)式為()A. B.C. D.7.若、為異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交8.經(jīng)過原點(diǎn)且傾斜角為的直線被圓C:截得的弦長(zhǎng)是,則圓在軸下方部分與軸圍成的圖形的面積等于()A. B. C. D.9.在各項(xiàng)均為正數(shù)的數(shù)列中,對(duì)任意都有.若,則等于()A.256 B.510 C.512 D.102410.設(shè)函數(shù)是上的偶函數(shù),且在上單調(diào)遞減.若,,,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則=_________________12.已知等邊,為中點(diǎn),若點(diǎn)是所在平面上一點(diǎn),且滿足,則__________.13.已知,,那么的值是________.14.已知樣本數(shù)據(jù)的方差是1,如果有,那么數(shù)據(jù),的方差為______.15.已知數(shù)列的通項(xiàng)公式,,前項(xiàng)和達(dá)到最大值時(shí),的值為______.16.在數(shù)列中,是其前項(xiàng)和,若,,則___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項(xiàng)和為.(1)求這個(gè)數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.18.已知A、B分別在射線CM、CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC19.如圖,在四棱錐P~ABCD中,底面ABCD為矩形,E,F(xiàn)分別為AD,PB的中點(diǎn),PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求證:EF∥平面PCD;(2)設(shè)G為AB中點(diǎn),求證:平面EFG⊥平面PCD.20.已知向量,的夾角為,且,.(1)求;(2)求.21.在平面直角坐標(biāo)系xOy中,已知點(diǎn),,,.(1)①證明:;②證明:存在點(diǎn)P使得.并求出P的坐標(biāo);(2)過C點(diǎn)的直線將四邊形ABCD分成周長(zhǎng)相等的兩部分,產(chǎn)生的另一個(gè)交點(diǎn)為E,求點(diǎn)E的坐標(biāo).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】試題分析:由題意可知x=-4,y=3,r=5,所以.故選D.考點(diǎn):三角函數(shù)的概念.2、A【解題分析】
畫出不等式組表示的平面區(qū)域,平移目標(biāo)函數(shù),找出最優(yōu)解,求出的最小值.【題目詳解】畫出,滿足不等式組表示的平面區(qū)域,如圖所示平移目標(biāo)函數(shù)知,當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),取得最小值,由得,即點(diǎn)坐標(biāo)為∴的最小值為,故選A.【題目點(diǎn)撥】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.3、B【解題分析】
先根據(jù),可得,又因?yàn)椋?所以可得:在軸方向上的分量為,在軸方向上的分量為,又根據(jù),可得答案.【題目詳解】,,
,,
在軸方向上的分量為,
在軸方向上的分量為,
,
,,
兩式相比可得:.故選B.【題目點(diǎn)撥】.向量的坐標(biāo)運(yùn)算主要是利用加、減、數(shù)乘運(yùn)算法則進(jìn)行的.若已知有向線段兩端點(diǎn)的坐標(biāo),則應(yīng)先求出向量的坐標(biāo),解題過程中要注意方程思想的運(yùn)用及運(yùn)算法則的正確使用.4、C【解題分析】試題分析:若,那么,A錯(cuò);,B錯(cuò);是單調(diào)遞減函數(shù)當(dāng)時(shí),所以,C.正確;是減函數(shù),所以,故選C.考點(diǎn):不等式5、D【解題分析】
用正弦定理化邊為角,再由誘導(dǎo)公式和兩角和的正弦公式化簡(jiǎn)變形可得.【題目詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【題目點(diǎn)撥】本題考查正弦定理,考查三角形形狀的判斷.解題關(guān)鍵是誘導(dǎo)公式的應(yīng)用.6、B【解題分析】
根據(jù)圖像最大值和最小值可得,根據(jù)最大值和最小值的所對(duì)應(yīng)的的值,可得周期,然后由,得到,代入點(diǎn),結(jié)合的范圍,得到答案.【題目詳解】根據(jù)圖像可得,,即,根據(jù),得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故選B.【題目點(diǎn)撥】本題考查根據(jù)函數(shù)圖像求正弦型函數(shù)的解析式,屬于簡(jiǎn)單題.7、D【解題分析】解:因?yàn)闉楫惷嬷本€,直線,則與的位置關(guān)系是異面或相交,選D8、A【解題分析】
由已知利用垂徑定理求得,得到圓的半徑,畫出圖形,由扇形面積減去三角形面積求解.【題目詳解】解:直線方程為,圓的圓心坐標(biāo)為,半徑為.圓心到直線的距離.則,解得.圓的圓心坐標(biāo)為,半徑為1.如圖,,則,.,,圓在軸下方部分與軸圍成的圖形的面積等于.故選:.【題目點(diǎn)撥】本題考查直線與圓位置關(guān)系的應(yīng)用,考查扇形面積的求法,考查計(jì)算能力,屬于中檔題.9、C【解題分析】
因?yàn)椋?,則因?yàn)閿?shù)列的各項(xiàng)均為正數(shù),所以所以,故選C10、B【解題分析】
根據(jù)偶函數(shù)的定義可變形,再直接比較的大小關(guān)系,即可利用函數(shù)的單調(diào)性得出,,的大小關(guān)系.【題目詳解】因?yàn)楹瘮?shù)是上的偶函數(shù),所以,而,函數(shù)在上單調(diào)遞減,所以.故選:B.【題目點(diǎn)撥】本題主要考查函數(shù)的性質(zhì)的應(yīng)用,涉及奇偶性,指數(shù)函數(shù),對(duì)數(shù)函數(shù)的單調(diào)性,以及對(duì)數(shù)的運(yùn)算性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】分析:由二倍角公式求得,再由誘導(dǎo)公式得結(jié)論.詳解:由已知,∴.故答案為.點(diǎn)睛:三角函數(shù)恒等變形中,公式很多,如誘導(dǎo)公式、同角關(guān)系,兩角和與差的正弦(余弦、正切)公式、二倍角公式,先選用哪個(gè)公式后選用哪個(gè)公式在解題中尤其重要,但其中最重要的是“角”的變換,要分析出已知角與未知角之間的關(guān)系,通過這個(gè)關(guān)系都能選用恰當(dāng)?shù)墓剑?2、0【解題分析】
利用向量加、減法的幾何意義可得,再利用向量數(shù)量積的定義即可求解.【題目詳解】根據(jù)向量減法的幾何意義可得:,即,所以.故答案為:0【題目點(diǎn)撥】本題考查了向量的加、減法的幾何意義以及向量的數(shù)量積,屬于基礎(chǔ)題.13、【解題分析】
首先根據(jù)題中條件求出角,然后代入即可.【題目詳解】由題知,,所以,故.故答案為:.【題目點(diǎn)撥】本題考查了特殊角的三角函數(shù)值,屬于基礎(chǔ)題.14、1【解題分析】
利用方差的性質(zhì)直接求解.【題目詳解】根據(jù)題意,樣本數(shù)據(jù)的平均數(shù)為,方差是1,則有,對(duì)于數(shù)據(jù),其平均數(shù)為,其方差為,故答案為1.【題目點(diǎn)撥】本題考查方差的求法,考查方差的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.15、或【解題分析】
令,求出的取值范圍,即可得出達(dá)到最大值時(shí)對(duì)應(yīng)的值.【題目詳解】令,解得,因此,當(dāng)或時(shí),前項(xiàng)和達(dá)到最大值.故答案為:或.【題目點(diǎn)撥】本題考查等差數(shù)列前項(xiàng)和最值的求解,可以利用關(guān)于的二次函數(shù),由二次函數(shù)的基本性質(zhì)求得,也可以利用等差數(shù)列所有非正項(xiàng)或非負(fù)項(xiàng)相加即得,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解題分析】
令,可求出的值,令,由可求出的表達(dá)式,再檢驗(yàn)是否符合時(shí)的表達(dá)式,由此可得出數(shù)列的通項(xiàng)公式.【題目詳解】當(dāng)時(shí),;當(dāng)時(shí),.不適合上式,因此,.故答案為:.【題目點(diǎn)撥】本題考查利用求數(shù)列的通項(xiàng)公式,一般利用,求解時(shí)還應(yīng)對(duì)是否滿足的表達(dá)式進(jìn)行驗(yàn)證,考查運(yùn)算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)當(dāng)且時(shí),利用求得,經(jīng)驗(yàn)證時(shí)也滿足所求式子,從而可得通項(xiàng)公式;(2)由(1)求得,利用錯(cuò)位相減法求得結(jié)果.【題目詳解】(1)當(dāng)且時(shí),…①當(dāng)時(shí),,也滿足①式數(shù)列的通項(xiàng)公式為:(2)由(1)知:【題目點(diǎn)撥】本題考查利用求解數(shù)列通項(xiàng)公式、錯(cuò)位相減法求解數(shù)列的前項(xiàng)和的問題,關(guān)鍵是能夠明確當(dāng)數(shù)列通項(xiàng)為等差與等比乘積時(shí),采用錯(cuò)位相減法求和,屬于??碱}型.18、(1)c=7或c=2.(1)=2sinθ+2【解題分析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結(jié)合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周長(zhǎng)f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函數(shù)的定義域和值域,求得f(θ)取得最大值.試題解析:(Ⅰ)∵a、b、c成等差,且公差為1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等變形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周長(zhǎng)f(θ)=|AC|+|BC|+|AB|=,又,當(dāng),即時(shí),f(θ)取得最大值.考點(diǎn):1.余弦定理;1.正弦定理19、(1)證明見解析(2)證明見解析【解題分析】
(1)取的中點(diǎn),連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(2)通過證明,證得平面,由此證得平面,從而證得平面平面.【題目詳解】(1)證明:取PC的中點(diǎn)H,連接FH則FH∥BC,F(xiàn)H,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四邊形EFHD為平行四邊形,∴EF∥DH,又DH?平面PCD,EF?平面PCD,∴EF∥平面PCD;(2)證明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂線定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【題目點(diǎn)撥】本小題主要考查線面平行的證明,考查面面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)1;(2)【解題分析】
(1)利用向量數(shù)量積的定義求解;(2)先求模長(zhǎng)的平方,再進(jìn)行開方可得.【題目詳解】(1)?=||||cos60°=2×1×=1;(2)|+|2=(+)2=+2?+=4+2×1+1=7.所以|+|=.【題目點(diǎn)撥】本題主要考查平面向量數(shù)量積的定義及向量模長(zhǎng)的求解,一般地,求解向量模長(zhǎng)時(shí),先把模長(zhǎng)平方,化為數(shù)量積運(yùn)算進(jìn)行求解.21、(1)①見解析;②見解析,;(2).【解題分析】
(1)①利用夾角公式可得;②由條件知點(diǎn)為四邊形外接圓的圓心,根據(jù),可得,四
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合同到期解約申請(qǐng)模板
- 2025年藥店店員合同模板
- 一年級(jí)下冊(cè)數(shù)學(xué)教案-兩位數(shù)加減整十?dāng)?shù)、一位數(shù)的口算 (20)-西師大版
- 分?jǐn)?shù)的初步認(rèn)識(shí)(一)練習(xí)十一(教案)2024-2025學(xué)年數(shù)學(xué)三年級(jí)上冊(cè) 蘇教版
- 2024年人工種植牙項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2025年杭州科技職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫1套
- 2025屆黑龍江省“六校聯(lián)盟”高三上學(xué)期聯(lián)考化學(xué)試題及答案
- 2025年度教師專業(yè)成長(zhǎng)路徑規(guī)劃聘用合同
- 2025年度養(yǎng)老產(chǎn)業(yè)簡(jiǎn)易版股份轉(zhuǎn)讓合同模板
- 2025年度文化旅游產(chǎn)業(yè)合作授權(quán)委托書
- 陜西省2024年高中學(xué)業(yè)水平合格考數(shù)學(xué)試卷試題(含答案)
- 美術(shù)基礎(chǔ)試題庫含答案
- 2024年4月自考05424現(xiàn)代設(shè)計(jì)史試題
- 鄉(xiāng)村研學(xué)旅行方案
- 《養(yǎng)老機(jī)構(gòu)認(rèn)知障礙照護(hù)專區(qū)設(shè)置與服務(wù)規(guī)范》
- DLT 5630-2021 輸變電工程防災(zāi)減災(zāi)設(shè)計(jì)規(guī)程-PDF解密
- 輸電線路安全施工培訓(xùn)
- 梅毒螺旋體抗體膠體金法檢測(cè)試劑條生產(chǎn)工藝的優(yōu)化
- 降低非計(jì)劃性拔管的發(fā)生率課件
- 2024年湖南中職學(xué)校語文普測(cè)備考試題庫(濃縮500題)
- 2024年新疆維吾爾自治區(qū)專升本考試大學(xué)政治測(cè)試題含解析
評(píng)論
0/150
提交評(píng)論