版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省淄博市淄川區(qū)般陽中學(xué)2024屆高三上數(shù)學(xué)期末質(zhì)量檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.2.設(shè)為坐標(biāo)原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.13.將函數(shù)的圖像向左平移個單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.4.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個大于2的偶數(shù)都可以寫成兩個質(zhì)數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國數(shù)學(xué)家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當(dāng)好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.5.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為()A. B. C. D.6.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.8.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗,根據(jù)測驗結(jié)果繪制了雷達(dá)圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲9.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績,并根據(jù)這2000名學(xué)生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內(nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.160010.函數(shù)的圖象大致是()A. B.C. D.11.正方形的邊長為,是正方形內(nèi)部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.12.如圖,在中,,且,則()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為正實數(shù),且,則的最小值為____________.14.公比為正數(shù)的等比數(shù)列的前項和為,若,,則的值為__________.15.的展開式中,常數(shù)項為______;系數(shù)最大的項是______.16.已知實數(shù),對任意,有,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.18.(12分)已知拋物線:()上橫坐標(biāo)為3的點與拋物線焦點的距離為4.(1)求p的值;(2)設(shè)()為拋物線上的動點,過P作圓的兩條切線分別與y軸交于A、B兩點.求的取值范圍.19.(12分)已知函數(shù),.(1)當(dāng)時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當(dāng)時,若對時,,且有唯一零點,證明:.20.(12分)貧困人口全面脫貧是全面建成小康社會的標(biāo)志性指標(biāo).黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰(zhàn),建立解決相對貧困的長效機(jī)制”對當(dāng)前和下一個階段的扶貧工作進(jìn)行了前瞻性的部署,即2020年要通過精準(zhǔn)扶貧全面消除絕對貧困,實現(xiàn)全面建成小康社會的奮斗目標(biāo).為了響應(yīng)黨的號召,某市對口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對某種農(nóng)產(chǎn)品加工生產(chǎn)銷售進(jìn)行指導(dǎo),經(jīng)調(diào)查知,在一個銷售季度內(nèi),每售出一噸該產(chǎn)品獲利5萬元,未售出的商品,每噸虧損2萬元.經(jīng)統(tǒng)計,兩市場以往100個銷售周期該產(chǎn)品的市場需求量的頻數(shù)分布如下表:市場:需求量(噸)90100110頻數(shù)205030市場:需求量(噸)90100110頻數(shù)106030把市場需求量的頻率視為需求量的概率,設(shè)該廠在下個銷售周期內(nèi)生產(chǎn)噸該產(chǎn)品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據(jù),確定下個銷售周期內(nèi)生產(chǎn)量噸還是噸?并說明理由.21.(12分)已知函數(shù),.(1)當(dāng)時,討論函數(shù)的單調(diào)性;(2)若,當(dāng)時,函數(shù),求函數(shù)的最小值.22.(10分)某企業(yè)對設(shè)備進(jìn)行升級改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,該項質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是設(shè)備改造前樣本的頻率分布直方圖,下表是設(shè)備改造后樣本的頻數(shù)分布表.圖:設(shè)備改造前樣本的頻率分布直方圖表:設(shè)備改造后樣本的頻率分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)求圖中實數(shù)的值;(2)企業(yè)將不合格品全部銷毀后,對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的定為一等品,每件售價240元;質(zhì)量指標(biāo)值落在區(qū)間或內(nèi)的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.若有一名顧客隨機(jī)購買兩件產(chǎn)品支付的費用為(單位:元),求的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時,,求得,故選:C.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.2、C【解析】試題分析:設(shè),由題意,顯然時不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時取等號,故選C.考點:1.拋物線的簡單幾何性質(zhì);2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運(yùn)用,屬于中檔題.解題時一定要注意分析條件,根據(jù)條件,利用向量的運(yùn)算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.3、B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個單位,得到,此時與函數(shù)的圖象重合,則,即,,當(dāng)時,取得最小值為,故選:.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.4、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.5、A【解析】
根據(jù)題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機(jī)變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功6、B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為,位于第二象限.故選:B【點睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.7、D【解析】
根據(jù)底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.8、D【解析】
根據(jù)雷達(dá)圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.9、B【解析】
由圖可列方程算得a,然后求出成績在內(nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績在內(nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內(nèi)的頻率,所以成績在內(nèi)的學(xué)生人數(shù).故選:B【點睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.10、B【解析】
根據(jù)函數(shù)表達(dá)式,把分母設(shè)為新函數(shù),首先計算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域為.,當(dāng),,單增,當(dāng),,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運(yùn)算,同學(xué)們還可以用特殊值法等方法進(jìn)行判斷.11、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),,,則,,由,即,得.所以=,所以當(dāng)時,的最小值為.故選:C.【點睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.12、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當(dāng)且僅當(dāng),即時,等號成立.故答案為:【點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.14、56【解析】
根據(jù)已知條件求等比數(shù)列的首項和公比,再代入等比數(shù)列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式和前項和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.15、【解析】
求出二項展開式的通項,令指數(shù)為零,求出參數(shù)的值,代入可得出展開式中的常數(shù)項;求出項的系數(shù),利用作商法可求出系數(shù)最大的項.【詳解】的展開式的通項為,令,得,所以,展開式中的常數(shù)項為;令,令,即,解得,,,因此,展開式中系數(shù)最大的項為.故答案為:;.【點睛】本題考查二項展開式中常數(shù)項的求解,同時也考查了系數(shù)最大項的求解,涉及展開式通項的應(yīng)用,考查分析問題和解決問題的能力,屬于中等題.16、-1【解析】
由二項式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數(shù)的求法,意在考查學(xué)生對這些知識的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值為;極小值為;(2)見解析【解析】
(1)對函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域為,,所以當(dāng)時,;當(dāng)時,,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因為,所以,又,則,因為,且在上單調(diào)遞減,所以,故.【點睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.18、(1);(2)【解析】
(1)根據(jù)橫坐標(biāo)為3的點與拋物線焦點的距離為4,由拋物線的定義得到求解.(2)設(shè)過點的直線方程為,根據(jù)直線與圓相切,則有,整理得:,根據(jù)題意,建立,將韋達(dá)定理代入求解.【詳解】(1)因為橫坐標(biāo)為3的點與拋物線焦點的距離為4,由拋物線的定義得:,解得:.(2)設(shè)過點的直線方程為,因為直線與圓相切,所以,整理得:,,由題意得:所以,,因為,所以,所以.【點睛】本題主要考查拋物線的定義及點與拋物線,直線與圓的位置關(guān)系,還考查了運(yùn)算求解的能力,屬于中檔題.19、(1)①見解析,②見解析;(2)見解析【解析】
(1)①把代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;②令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時,;當(dāng)時,;當(dāng)時,.(2)由題意,,在上有唯一零點.利用導(dǎo)數(shù)可得當(dāng)時,在上單調(diào)遞減,當(dāng),時,在,上單調(diào)遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調(diào)遞減,進(jìn)一步得到在上單調(diào)遞增,由此可得.【詳解】解:(1)①當(dāng)時,,,,又,切線方程為,即;②令,則,在上單調(diào)遞減.又,當(dāng)時,,即;當(dāng)時,,即;當(dāng)時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當(dāng)時,,在上單調(diào)遞減,當(dāng),時,,在,上單調(diào)遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調(diào)遞減,又,,.在上單調(diào)遞增,.【點睛】本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題.20、(1);(2)噸,理由見解析【解析】
(1)設(shè)“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,由題可得,,,,,,代入,計算可得答案;(2)可取180,190,200,210,220,求出噸和噸時的期望,比較大小即可.【詳解】(1)設(shè)“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,則,,,,,,;(2)可取180,190,200,210,220,當(dāng)時,當(dāng)時,.,時,平均利潤大,所以下個銷售周期內(nèi)生產(chǎn)量噸.【點睛】本題考查離散型隨機(jī)變量的期望,是中檔題.21、(1)見解析(2)的最小值為【解析】
(1)由題可得函數(shù)的定義域為,,當(dāng)時,,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024離婚協(xié)議要點及范本
- 2024石材礦山荒料資源整合與開發(fā)合同3篇
- 2025年度鴨苗繁育基地建設(shè)與運(yùn)營管理合同3篇
- 2025年度船舶船員體檢與健康保險合同3篇
- 二零二五年搬家物流運(yùn)輸合同樣本6篇
- 2024版建設(shè)工程施工合同ef0203
- 二零二五年度房地產(chǎn)項目土地置換合同3篇
- 2025年草原生態(tài)保護(hù)與草原旅游開發(fā)一體化合同3篇
- 2024版深圳股權(quán)轉(zhuǎn)讓合同協(xié)議書范本
- 2025年度高空樓頂廣告設(shè)計與施工一體化服務(wù)合同4篇
- 深圳2024-2025學(xué)年度四年級第一學(xué)期期末數(shù)學(xué)試題
- 中考語文復(fù)習(xí)說話要得體
- 《工商業(yè)儲能柜技術(shù)規(guī)范》
- 華中師范大學(xué)教育技術(shù)學(xué)碩士研究生培養(yǎng)方案
- 醫(yī)院醫(yī)學(xué)倫理委員會章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 風(fēng)浪流耦合作用下錨泊式海上試驗平臺的水動力特性試驗
- 高考英語語法專練定語從句含答案
- 有機(jī)農(nóng)業(yè)種植技術(shù)操作手冊
- 【教案】Unit+5+Fun+Clubs+大單元整體教學(xué)設(shè)計人教版(2024)七年級英語上冊
- 2020年的中國海外工程示范營地申報材料及評分標(biāo)準(zhǔn)
評論
0/150
提交評論