2023年天津市中學數(shù)學九年級第一學期期末考試模擬試題_第1頁
2023年天津市中學數(shù)學九年級第一學期期末考試模擬試題_第2頁
2023年天津市中學數(shù)學九年級第一學期期末考試模擬試題_第3頁
2023年天津市中學數(shù)學九年級第一學期期末考試模擬試題_第4頁
2023年天津市中學數(shù)學九年級第一學期期末考試模擬試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年天津市中學數(shù)學九年級第一學期期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.把拋物線先向左平移1個單位,再向上平移個單位后,得拋物線,則的值是()A.-2 B.2 C.8 D.142.已知:在△ABC中,∠A=78°,AB=4,AC=6,下列陰影部分的三角形與原△ABC不相似的是()A. B.C. D.3.如圖,拋物線和直線,當時,的取值范圍是()A. B.或 C.或 D.4.已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(-1,1),下列結(jié)論:①abc<1;②b2-4ac=1;③a<2;④4a-2b+c>1.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.45.某中學有一塊長30cm,寬20cm的矩形空地,該中學計劃在這塊空地上劃出三分之二的區(qū)域種花,設計方案如圖所示,求花帶的寬度.設花帶的寬度為xm,則可列方程為()A.(30﹣x)(20﹣x)=×20×30 B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30 D.(30﹣2x)(20﹣x)=×20×306.如圖,從半徑為5的⊙O外一點P引圓的兩條切線PA,PB(A,B為切點),若∠APB=60°,則四邊形OAPB的周長等于()A.30 B.40 C. D.7.已知一組數(shù)據(jù):2,5,2,8,3,2,6,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.中位數(shù)是3,眾數(shù)是2 B.中位數(shù)是2,眾數(shù)是3C.中位數(shù)是4,眾數(shù)是2 D.中位數(shù)是3,眾數(shù)是48.若關于x的分式方程有增根,則m為()A.-1 B.1 C.2 D.-1或29.在一個不透明的布袋中裝有9個白球和若干個黑球,它們除顏色不同外,其余均相同。若從中隨機摸出一個球,摸到白球的概率是,則黑球的個數(shù)為()A.3 B.12 C.18 D.2710.一人乘雪橇沿坡度為1:的斜坡滑下,滑下距離S(米)與時間t(秒)之間的關系為S=10t+2t2,若滑動時間為4秒,則他下降的垂直高度為()A.72米 B.36米 C.米 D.米二、填空題(每小題3分,共24分)11.若反比例函數(shù)y=﹣6x的圖象經(jīng)過點A(m,3),則m的值是_____12.如圖,在矩形ABCD中,AB=6,BC=4,M是AD的中點,N是AB邊上的動點,將△AMN沿MN所在直線折疊,得到△,連接,則的最小值是________13.如圖,拋物線與軸交于兩點,是以點為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是________.14.如圖,、、均為⊙的切線,分別是切點,,則的周長為____.15.如圖,點D、E分別是線段AB、AC上一點∠AED=∠B,若AB=8,BC=7,AE=5則,則DE=_____.16.如圖,將矩形ABCD繞點A旋轉(zhuǎn)至矩形AB′C′D′位置,此時AC的中點恰好與D點重合,AB'交CD于點E,若AB=3cm,則線段EB′的長為_____.17.如圖,P是拋物線y=﹣x2+x+2在第一象限上的點,過點P分別向x軸和y軸引垂線,垂足分別為A,B,則四邊形OAPB周長的最大值為__18.已知一塊圓心角為300°的扇形鐵皮,用它做一個圓錐形的煙囪帽(接縫忽略不計),若圓錐的底面圓的直徑是80cm,則這塊扇形鐵皮的半徑是_____cm.三、解答題(共66分)19.(10分)為了從小華和小亮兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊水平進行測試,兩人在相同條件下各射擊6次,命中的環(huán)數(shù)如下(單位:環(huán)):小華:7,8,7,8,9,9;小亮:5,8,7,8,1,1.(1)填寫下表:平均數(shù)(環(huán))中位數(shù)(環(huán))方差(環(huán)2)小華8小亮83(2)根據(jù)以上信息,你認為教練會選擇誰參加比賽,理由是什么?(3)若小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績的方差.(填“變大”、“變小”、“不變”)20.(6分)某商場購進一批單價為4元的日用品.若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù)關系.(1)試求y與x之間的函數(shù)關系式;(2)當銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?21.(6分)如圖,在矩形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動,點Q沿DA邊從點D開始向點A以1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間(0≤t≤6),那么:(1)當t為何值時,△QAP是等腰直角三角形?(2)當t為何值時,以點Q、A、P為頂點的三角形與△ABC相似?22.(8分)已知函數(shù)y=mx1﹣(1m+1)x+1(m≠0),請判斷下列結(jié)論是否正確,并說明理由.(1)當m<0時,函數(shù)y=mx1﹣(1m+1)x+1在x>1時,y隨x的增大而減小;(1)當m>0時,函數(shù)y=mx1﹣(1m+1)x+1圖象截x軸上的線段長度小于1.23.(8分)如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,DE⊥BC,垂足為E.(1)求證:DE是⊙O的切線;(2)若DG⊥AB,垂足為點F,交⊙O于點G,∠A=35°,⊙O半徑為5,求劣弧DG的長.(結(jié)果保留π)24.(8分)某中學課外興趣活動小組準備圍建一個矩形苗圃,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃垂直于墻的一邊長為x米.(1)若苗圃的面積為72平方米,求x的值;(2)這個苗圃的面積能否是120平方米?請說明理由.25.(10分)現(xiàn)有甲、乙、丙三名學生參加學校演講比賽,并通過抽簽確定三人演講的先后順序.(1)求甲第一個演講的概率;(2)畫樹狀圖或表格,求丙比甲先演講的概率.26.(10分)一個不透明的口袋中有1個大小、質(zhì)地完全相同的乒乓球,球面上分別標有數(shù)-1,2,-3,1.(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數(shù)是負數(shù)的概率為________.(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】將改寫成頂點式,然后按照題意將進行平移,寫出其平移后的解析式,從而求解.【詳解】解:由題意可知拋物線先向左平移1個單位,再向上平移個單位∴∴n=2故選:B本題考查了二次函數(shù)圖象與幾何變換,利用頂點坐標的變化確定函數(shù)圖象的變化可以使求解更加簡便.2、C【分析】根據(jù)相似三角形的判定定理對各選項進行逐一判定即可.【詳解】解:A、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;C、兩三角形的對應邊不成比例,故兩三角形不相似,故本選項正確.D、兩三角形對應邊成比例且夾角相等,故兩三角形相似,故本選項錯誤;故選:C.本題主要考查了相似三角形的判定,熟知相似三角形的判定定理是解答此題的關鍵.3、B【分析】聯(lián)立兩函數(shù)解析式求出交點坐標,再根據(jù)函數(shù)圖象寫出拋物線在直線上方部分的的取值范圍即可.【詳解】解:聯(lián)立,解得,,兩函數(shù)圖象交點坐標為,,由圖可知,時的取值范圍是或.故選:B.本題考查了二次函數(shù)與不等式,此類題目利用數(shù)形結(jié)合的思想求解更加簡便.4、A【分析】根據(jù)拋物線的圖像和表達式分析其系數(shù)的值,通過特殊點的坐標判斷結(jié)論是否正確.【詳解】∵函數(shù)圖象開口向上,∴,又∵頂點為(,1),∴,∴,由拋物線與軸的交點坐標可知:,∴c>1,∴abc>1,故①錯誤;∵拋物線頂點在軸上,∴,即,又,∴,故②錯誤;∵頂點為(,1),∴,∵,∴,∵,∴,則,故③錯誤;由拋物線的對稱性可知與時的函數(shù)值相等,∴,∴,故④正確.綜上,只有④正確,正確個數(shù)為1個.故選:A.本題考查了二次函數(shù)圖象與系數(shù)的關系,根據(jù)二次函數(shù)圖象以及頂點坐標找出之間的關系是解題的關鍵.5、B【分析】根據(jù)等量關系:空白區(qū)域的面積=矩形空地的面積,列方程即可.【詳解】設花帶的寬度為xm,則可列方程為(30﹣2x)(20﹣x)=×20×30,故選:B.本題考查了一元二次方程的實際應用-幾何問題,理清題意找準等量關系是解題的關鍵.6、D【分析】連接OP,根據(jù)切線長定理得到PA=PB,再得出∠OPA=∠OPB=30°,根據(jù)含30°直角三角形的性質(zhì)以及勾股定理求出PB,計算即可.【詳解】解:連接OP,∵PA,PB是圓的兩條切線,∴PA=PB,OA⊥PA,OB⊥PB,又OA=OB,OP=OP,∴△OAP≌△OBP(SSS),∴∠OPA=∠OPB=30°,∴OP=2OB=10,∴PB==5=PA,∴四邊形OAPB的周長=5+5+5+5=10(+1),故選:D.本題考查的是切線的性質(zhì)、切線長定理、勾股定理以及全等三角形的性質(zhì)等知識,作出輔助線構(gòu)造直角三角形是解題的關鍵.7、A【分析】先將這組數(shù)據(jù)從小到大排列,找出最中間的數(shù),就是中位數(shù),出現(xiàn)次數(shù)最多的數(shù)就是眾數(shù).【詳解】解:將這組數(shù)據(jù)從小到大排列為:2,2,2,3,5,6,8,最中間的數(shù)是3,則這組數(shù)據(jù)的中位數(shù)是3;2出現(xiàn)了三次,出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)是2;故選:A.此題考查了眾數(shù)、中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).8、A【分析】增根就是分母為零的x值,所以對分式方程去分母,得m=x-3,將增根x=2代入即可解得m值.【詳解】對分式方程去分母,得:1=﹣m+2-x,∴m=x-3,∵方程有增根,∴x-2=0,解得:x=2,將x=2代入m=x-3中,得:m=2-3=﹣1,故選:A.本題考查分式方程的解,解答的關鍵是理解分式方程有增根的原因.9、C【分析】設黑球個數(shù)為,根據(jù)概率公式可知白球個數(shù)除以總球數(shù)等于摸到白球的概率,建立方程求解即可.【詳解】設黑球個數(shù)為,由題意得解得:故選C.本題考查根據(jù)概率求數(shù)量,熟練掌握概率公式建立方程是解題的關鍵.10、B【分析】求滑下的距離,設出下降的高度,表示出水平高度,利用勾股定理即可求解.【詳解】當時,,設此人下降的高度為米,過斜坡頂點向地面作垂線,在直角三角形中,由勾股定理得:,解得.故選:.此題主要考查了坡角問題,理解坡比的意義,使用勾股定理,設未知數(shù),列方程求解是解題關鍵.二、填空題(每小題3分,共24分)11、﹣2【解析】∵反比例函數(shù)y=-6x∴3=-6m,解得12、【分析】由折疊的性質(zhì)可得AM=A′M=2,可得點A′在以點M為圓心,AM為半徑的圓上,當點A′在線段MC上時,A′C有最小值,由勾股定理可求MC的長,即可求A′C的最小值.【詳解】∵四邊形ABCD是矩形,∴AB=CD=6,BC=AD=4,∵M是AD邊的中點,∴AM=MD=2,∵將△AMN沿MN所在直線折疊,∴AM=A′M=2,∴點A′在以點M為圓心,AM為半徑的圓上,∴如圖,當點A′在線段MC上時,A′C有最小值,∵MC===2,∴A′C的最小值=MC?MA′=2?2,故答案為:2?2.本題主要考查了翻折變換,矩形的性質(zhì)、勾股定理,解題的關鍵是分析出A′點運動的軌跡.13、3.1【分析】連接BP,如圖,先解方程=0得A(?4,0),B(4,0),再判斷OQ為△ABP的中位線得到OQ=BP,利用點與圓的位置關系,BP過圓心C時,PB最大,如圖,點P運動到P′位置時,BP最大,然后計算出BP′即可得到線段OQ的最大值.【詳解】連接BP,如圖,當y=0時,=0,解得x1=4,x2=?4,則A(?4,0),B(4,0),∵Q是線段PA的中點,∴OQ為△ABP的中位線,∴OQ=BP,當BP最大時,OQ最大,而BP過圓心C時,PB最大,如圖,點P運動到P′位置時,BP最大,∵BC=∴BP′=1+2=7,∴線段OQ的最大值是3.1,故答案為:3.1.本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.也考查了三角形中位線.14、1【分析】根據(jù)切線長定理得:EC=FC,BF=BD,AD=AE,再由△ABC的周長代入可求得結(jié)論.【詳解】解:∵AD,AE、CB均為⊙O的切線,D,E,F(xiàn)分別是切點,∴EC=FC,BF=BD,AD=AE,∵△ABC的周長=AC+BC+AB=AC+CF+BF+AB,∴△ABC的周長=AC+EC+BD+AB=AE+AD=2AD,∵AD=5,∴△ABC的周長為1.故答案為:1本題主要考查了切線長定理,熟練掌握從圓外一點引圓的兩條切線,它們的切線長相等.15、【分析】先根據(jù)題意得出△AED∽△ABC,再由相似三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴,∵AB=8,BC=7,AE=5,∴,解得ED=.故答案為:.本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形的對應邊成比例是解答此題的關鍵.16、1cm【分析】根據(jù)旋轉(zhuǎn)后AC的中點恰好與D點重合,利用旋轉(zhuǎn)的性質(zhì)得到直角三角形ACD中,∠ACD=30°,再由旋轉(zhuǎn)后矩形與已知矩形全等及矩形的性質(zhì)得到∠DAE為30°,進而求出AD,DE,AE的長,則EB′的長可求出.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可知:AC=AC',∵D為AC'的中點,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴∠DAE=30°,∵AB=CD=3cm,∴AD=cm,∴DE=1cm,∴AE=2cm,∵AB=AB'=3cm,∴EB'=3﹣2=1cm.故答案為:1cm.此題考查了旋轉(zhuǎn)的性質(zhì),含30度直角三角形的性質(zhì),解直角三角形,熟練掌握旋轉(zhuǎn)的性質(zhì)是解本題的關鍵.17、1【分析】設P(x,y)(2>x>0,y>0),根據(jù)矩形的周長公式得到C=-2(x-1)2+1.根據(jù)二次函數(shù)的性質(zhì)來求最值即可.【詳解】解:∵y=﹣x2+x+2,∴當y=0時,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故設P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+1.∴當x=1時,C最大值=1.即:四邊形OAPB周長的最大值為1.本題主要考查二次函數(shù)的最值以及二次函數(shù)圖象上點的坐標特征.設P(x,y)(2>x>0,y>0),根據(jù)矩形的周長公式得到C=﹣2(x﹣1)2+1.最后根據(jù)根據(jù)二次函數(shù)的性質(zhì)來求最值是關鍵.18、1【解析】利用底面周長=展開圖的弧長可得.【詳解】解:設這個扇形鐵皮的半徑為rcm,由題意得=π×80,解得r=1.故這個扇形鐵皮的半徑為1cm,故答案為1.本題考查了圓錐的計算,解答本題的關鍵是確定圓錐的底面周長=展開圖的弧長這個等量關系,然后由扇形的弧長公式和圓的周長公式求值.三、解答題(共66分)19、(1)8,8,;(2)選擇小華參賽.(3)變小【分析】(1)根據(jù)方差、平均數(shù)和中位數(shù)的定義求解;(2)根據(jù)方差的意義求解;(3)根據(jù)方差公式求解.【詳解】(1)解:小華射擊命中的平均數(shù):=8,小華射擊命中的方差:,小亮射擊命中的中位數(shù):;(2)解:∵小華=小亮,S2小華<S2小亮∴選小華參賽更好,因為兩人的平均成績相同,但小華的方差較小,說明小華的成績更穩(wěn)定,所以選擇小華參賽.(3)解:小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績的方差變小.本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術平均數(shù)和眾數(shù).20、(1)(2)當銷售價格定為6元時,每月的利潤最大,每月的最大利潤為40000元【解析】試題分析:(1)設y=kx+b,再由題目已知條件不難得出解析式;(2)設利潤為W,將W用含x的式子表示出來,W為關于x的二次函數(shù),要求最值,將解析式化為頂點式即可求出.試題解析:解:(1)設y=kx+b,根據(jù)題意得:,解得:k=-1,b=8,所以,y與x的函數(shù)關系式為y=-x+8;(2)設利潤為W,則W=(x-4)(-x+8)=-(x-6)2+4,因為a=-1<0,所以當x=6時,W最大為4萬元.當銷售價格定為6元時,才能使每月的利潤最大,每月的最大利潤是4萬元.點睛:要求最值,一般講二次函數(shù)解析式寫成頂點式.21、(1)t=2s;(2)t=1.2s或3s.【分析】(1)根據(jù)等腰三角形的性質(zhì)可得QA=AP,從而可以求得結(jié)果;(2)分與兩種情況結(jié)合相似三角形的性質(zhì)討論即可.【詳解】(1)由QA=AP,即6-t=2t,得t=2(秒);(2)當時,△QAP~△ABC,則,解得t=1.2(秒)當時,△QAP~△ABC,則,解得t=3(秒)∴當t=1.2或3時,△QAP~△ABC.22、(1)詳見解析;(1)詳見解析.【分析】(1)先確定拋物線的對稱軸為直線x=1+,利用二次函數(shù)的性質(zhì)得當m>1+時,y隨x的增大而減小,從而可對(1)的結(jié)論進行判斷;(1)設拋物線與x軸的兩交的橫坐標為x1、x1,則根據(jù)根與系數(shù)的關系得到x1+x1=,x1x1=,利用完全平方公式得到|x1﹣x1|===|1﹣|,然后m取時可對(1)的結(jié)論進行判斷.【詳解】解:(1)的結(jié)論正確.理由如下:拋物線的對稱軸為直線,∵m<0,∴當m>1+時,y隨x的增大而減小,而1>1+,∴當m<0時,函數(shù)y=mx1﹣(1m+1)x+1在x>1時,y隨x的增大而減??;(1)的結(jié)論錯誤.理由如下:設拋物線與x軸的兩交的橫坐標為x1、x1,則x1+x1=,x1x1=,|x1﹣x1|=====|1﹣|,而m>0,若m取時,|x1﹣x1|=3,∴當m>0時,函數(shù)y=mx1﹣(1m+1)x+1圖象截x軸上的線段長度小于1不正確.本題考查了二次函數(shù)的增減性問題,與x軸的交點問題,熟練掌握二次函數(shù)的性質(zhì)是解題的關鍵.23、(1)見解析;(2).【分析】(1)連接BD,OD,求出OD∥BC,推出OD⊥DE,根據(jù)切線判定推出即可.(2)求出∠BOD=∠GOB,從而求出∠BOD的度數(shù),根據(jù)弧長公式求出即可.【詳解】解:(1)證明:連接BD、OD,∵AB是⊙O直徑,∴∠ADB=90°.∴BD⊥AC.∵AB=BC,∴AD=DC.∵AO=OB,∴D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論