新疆烏魯木齊市第四中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
新疆烏魯木齊市第四中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
新疆烏魯木齊市第四中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
新疆烏魯木齊市第四中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
新疆烏魯木齊市第四中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

新疆烏魯木齊市第四中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知關(guān)于的不等式的解集為空集,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.已知是定義在上的偶函數(shù),且在上遞增,那么一定有()A. B.C. D.3.要完成下列兩項(xiàng)調(diào)查:①?gòu)哪成鐓^(qū)125戶高收入家庭、280戶中等收入家庭、95戶低收入家庭中選出100戶調(diào)查社會(huì)購(gòu)買(mǎi)力的某項(xiàng)指標(biāo);②從某中學(xué)的15名藝術(shù)特長(zhǎng)生中選出3名調(diào)查學(xué)習(xí)負(fù)擔(dān)情況,宜采用的抽樣方法依次為()A.①隨機(jī)抽樣法,②系統(tǒng)抽樣法B.①分層抽樣法,②隨機(jī)抽樣法C.①系統(tǒng)抽樣法,②分層抽樣法D.①②都用分層抽樣法4.△ABC中,三個(gè)內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若c=,b=1,∠B=,則△ABC的形狀為()A.等腰直角三角形 B.直角三角形C.等邊三角形 D.等腰三角形或直角三角形5.如圖,位于處的海面觀測(cè)站獲悉,在其正東方向相距40海里的處有一艘漁船遇險(xiǎn),并在原地等待營(yíng)救.在處南偏西且相距20海里的處有一救援船,其速度為海里小時(shí),則該船到求助處的時(shí)間為()分鐘.A.24 B.36 C.48 D.606.在中,角、、所對(duì)的邊分別為、、,如果,則的形狀是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形7.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)8.延長(zhǎng)正方形的邊至,使得.若動(dòng)點(diǎn)從點(diǎn)出發(fā),沿正方形的邊按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到點(diǎn),若,下列判斷正確的是()A.滿足的點(diǎn)必為的中點(diǎn)B.滿足的點(diǎn)有且只有一個(gè)C.的最小值不存在D.的最大值為9.在中,,點(diǎn)P是直線BN上一點(diǎn),若,則實(shí)數(shù)m的值是()A.2 B. C. D.10.設(shè)的內(nèi)角所對(duì)邊分別為.則該三角形()A.無(wú)解 B.有一解 C.有兩解 D.不能確定二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列的公比為2,前n項(xiàng)和為,則=______.12.已知角α的終邊與單位圓交于點(diǎn).則___________.13.已知P1(x1,y1),P2(x2,y2)是以原點(diǎn)O為圓心的單位圓上的兩點(diǎn),∠P1OP2=θ(θ為鈍角).若,則x1x2+y1y2的值為_(kāi)____.14.已知,且,則的值是_______.15.已知中內(nèi)角的對(duì)邊分別是,,,,則為_(kāi)____.16.已知點(diǎn)P(tanα,cosα)在第三象限,則角α的終邊在第________象限.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖所示,平面平面,四邊形為矩形,,點(diǎn)為的中點(diǎn).(1)若,求三棱錐的體積;(2)點(diǎn)為上任意一點(diǎn),在線段上是否存在點(diǎn),使得?若存在,確定點(diǎn)的位置,并加以證明;若不存在,請(qǐng)說(shuō)明理由.18.在中,內(nèi)角,,的對(duì)邊分別為,已知.(1)求角的大?。唬?)若,且,求的面積.19.如圖,在長(zhǎng)方體中,,點(diǎn)為的中點(diǎn).(1)求證:直線平面;(2)求證:平面平面;(3)求直線與平面的夾角.20.已知是夾角為的單位向量,且,.(1)求;(2)求與的夾角.21.如圖,在三棱錐中,,分別為棱,上的三等份點(diǎn),,.(1)求證:平面;(2)若,平面,求證:平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】

由題意得出關(guān)于的不等式的解集為,由此得出或,在成立時(shí)求出實(shí)數(shù)的值代入不等式進(jìn)行驗(yàn)證,由此解不等式可得出實(shí)數(shù)的取值范圍.【題目詳解】由題意知,關(guān)于的不等式的解集為.(1)當(dāng),即.當(dāng)時(shí),不等式化為,合乎題意;當(dāng)時(shí),不等式化為,即,其解集不為,不合乎題意;(2)當(dāng),即時(shí).關(guān)于的不等式的解集為.,解得.綜上可得,實(shí)數(shù)的取值范圍是.故選:C.【題目點(diǎn)撥】本題考查二次不等式在上恒成立問(wèn)題,求解時(shí)根據(jù)二次函數(shù)圖象轉(zhuǎn)化為二次項(xiàng)系數(shù)和判別式的符號(hào)列不等式組進(jìn)行求解,考查化歸與轉(zhuǎn)化思想,屬于中等題.2、D【解題分析】

根據(jù)題意,結(jié)合,可知,再利用偶函數(shù)的性質(zhì)即可得出結(jié)論.【題目詳解】是定義在上的偶函數(shù),,在上遞增,,即,故選:D.【題目點(diǎn)撥】本題考查函數(shù)奇偶性與單調(diào)性的簡(jiǎn)單應(yīng)用,判斷出是解題關(guān)鍵.3、B【解題分析】①由于社會(huì)購(gòu)買(mǎi)力與收入有關(guān)系,所以應(yīng)采用分層抽樣法;②由于人數(shù)少,可以采用簡(jiǎn)單隨機(jī)抽樣法要完成下列二項(xiàng)調(diào)查:①?gòu)哪成鐓^(qū)125戶高收入家庭,280戶中等收入家庭,95戶低收入家庭中,選出100戶調(diào)查社會(huì)解:∵社會(huì)購(gòu)買(mǎi)力的某項(xiàng)指標(biāo),受到家庭收入的影響而社區(qū)中各個(gè)家庭收入差別明顯①用分層抽樣法,而從某中學(xué)的15名藝術(shù)特長(zhǎng)生,要從中選出3人調(diào)查學(xué)習(xí)負(fù)擔(dān)情況的調(diào)查中個(gè)體之間差別不大,且總體和樣本容量較小,∴②用隨機(jī)抽樣法故選B4、D【解題分析】試題分析:在中,由正弦定理可得,因?yàn)?,所以或,所以或,所以的形狀一定為等腰三角形或直角三角形,故選D.考點(diǎn):正弦定理.5、A【解題分析】

利用余弦定理求出的長(zhǎng)度,然后根據(jù)速度、時(shí)間、路程之間的關(guān)系求出時(shí)間即可.【題目詳解】由題意可知:,運(yùn)用余弦定理可知:該船到求助處的時(shí)間,故本題選A.【題目點(diǎn)撥】本題考查了余弦定理的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.6、C【解題分析】

結(jié)合正弦定理和三角恒等變換及三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)即可求得結(jié)果【題目詳解】利用正弦定理得,化簡(jiǎn)得,即,則或,解得或故的形狀是等腰三角形或直角三角形故選:C【題目點(diǎn)撥】本題考查根據(jù)正弦定理和三角恒等變化,三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)求值,屬于中檔題7、C【解題分析】

根據(jù)并集的求法直接求出結(jié)果.【題目詳解】∵,∴,故選C.【題目點(diǎn)撥】考查并集的求法,屬于基礎(chǔ)題.8、D【解題分析】試題分析:設(shè)正方形的邊長(zhǎng)為1,建立如圖所示直角坐標(biāo)系,則的坐標(biāo)為,則設(shè),由得,所以,當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;由以上討論可知,當(dāng)時(shí),可為的中點(diǎn),也可以是點(diǎn),所以A錯(cuò);使的點(diǎn)有兩個(gè),分別為點(diǎn)與中點(diǎn),所以B錯(cuò),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí),有最小值,故C錯(cuò),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí),有最大值,所以D正確,故選D.考點(diǎn):向量的坐標(biāo)運(yùn)算.【名師點(diǎn)睛】本題考查平面向量線性運(yùn)算,屬中檔題.平面向量是高考的必考內(nèi)容,向量坐標(biāo)化是聯(lián)系圖形與代數(shù)運(yùn)算的渠道,通過(guò)構(gòu)建直角坐標(biāo)系,使得向量運(yùn)算完全代數(shù)化,通過(guò)加、減、數(shù)乘的運(yùn)算法則,實(shí)現(xiàn)了數(shù)形的緊密結(jié)合,同時(shí)將參數(shù)的取值范圍問(wèn)題轉(zhuǎn)化為求目標(biāo)函數(shù)的取值范圍問(wèn)題,在解題過(guò)程中,還常利用向量相等則坐標(biāo)相同這一原則,通過(guò)列方程(組)求解,體現(xiàn)方程思想的應(yīng)用.9、B【解題分析】

根據(jù)向量的加減運(yùn)算法則,通過(guò),把用和表示出來(lái),即可得到的值.【題目詳解】在中,,點(diǎn)是直線上一點(diǎn),所以,又三點(diǎn)共線,所以,即.故選:B.【題目點(diǎn)撥】本題考查實(shí)數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意平面向量加法法則的合理運(yùn)用,屬于基礎(chǔ)題.10、C【解題分析】

利用正弦定理以及大邊對(duì)大角定理求出角,從而判斷出該三角形解的個(gè)數(shù).【題目詳解】由正弦定理得,所以,,,,或,因此,該三角形有兩解,故選C.【題目點(diǎn)撥】本題考查三角形解的個(gè)數(shù)的判斷,解題時(shí)可以充分利用解的個(gè)數(shù)的等價(jià)條件來(lái)進(jìn)行判斷,具體來(lái)講,在中,給定、、,該三角形解的個(gè)數(shù)判斷如下:(1)為直角或鈍角,,一解;,無(wú)解;(2)為銳角,或,一解;,兩解;,無(wú)解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】由等比數(shù)列的定義,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.12、【解題分析】

直接利用三角函數(shù)的坐標(biāo)定義求解.【題目詳解】由題得.故答案為【題目點(diǎn)撥】本題主要考查三角函數(shù)的坐標(biāo)定義,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.13、-【解題分析】

先利用平面向量數(shù)量積的定義和坐標(biāo)運(yùn)算得到,再利用兩角和的正弦公式和平方關(guān)系進(jìn)行求解.【題目詳解】根據(jù)題意知,又P1,P2在單位圓上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ為鈍角,聯(lián)立①②求得cosθ=-.【題目點(diǎn)撥】本題主要考查平面向量的數(shù)量積定義和坐標(biāo)運(yùn)算、兩角和的正弦公式,意在考查學(xué)生的邏輯思維能力和基本運(yùn)算能力,屬于中檔題.14、【解題分析】

計(jì)算出的值,然后利用誘導(dǎo)公式可求得的值.【題目詳解】,,則,因此,.故答案為:.【題目點(diǎn)撥】本題考查利用誘導(dǎo)公式求值,同時(shí)也考查了同角三角函數(shù)基本關(guān)系的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解題分析】

根據(jù)正弦定理即可.【題目詳解】因?yàn)?,,;所以,由正弦定理可得【題目點(diǎn)撥】本題主要考查了正弦定理:,屬于基礎(chǔ)題.16、二【解題分析】

由點(diǎn)P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,從而得到α所在的象限.【題目詳解】因?yàn)辄c(diǎn)P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,則角α的終邊在第二象限,故答案為二.點(diǎn)評(píng):本題考查第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào),以及三角函數(shù)在各個(gè)象限內(nèi)的符號(hào).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)存在,為中點(diǎn),證明見(jiàn)解析.【解題分析】

(1)先根據(jù)面積垂直的性質(zhì)得到平面;再由題中數(shù)據(jù),結(jié)合棱錐體積公式,即可求出結(jié)果;(2)先由線面垂直的性質(zhì)得到為中點(diǎn)時(shí),有.再給出證明:取中點(diǎn),連接,,,由線面垂直的判定定理,以及面面垂直的性質(zhì)定理,證明平面,再由線面垂直的性質(zhì)定理,即可得出結(jié)果.【題目詳解】(1)因?yàn)樗倪呅螢榫匦危?,又平面平面,所以平面;又,所以,因此三棱錐的體積為:;(2)當(dāng)為中點(diǎn)時(shí),有.證明如下:取中點(diǎn),連接,,.∵為的中點(diǎn),為的中點(diǎn),∴,又∵,∴,∴四點(diǎn)共面.∵平面平面,平面平面,平面,,∴平面,又平面,∴,∵,為的中點(diǎn),∴,又,∴平面,又平面,∴,即.【題目點(diǎn)撥】本題主要考查求棱錐的體積,以及補(bǔ)全線線垂直的條件,熟記棱錐體積公式,以及線面垂直、面面垂直的判定定理與性質(zhì)定理即可,屬于常考題型.18、(1);(2).【解題分析】

(1)由二倍角公式得,求得則角可求;(2),得,由正弦定理得,再結(jié)合余弦定理得則面積可求【題目詳解】(1)因?yàn)?,所以,解得,因?yàn)?,所以;?)因?yàn)?,所以,由正弦定理得所以,由余弦定理,,所?所以.【題目點(diǎn)撥】本題考查二倍角公式,正余弦定理解三角形,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題19、(1)見(jiàn)證明;(2)見(jiàn)證明;(3)【解題分析】

(1)連接,交于,則為中點(diǎn),連接OP,可證明,從而可證明直線平面;(2)先證明AC⊥BD,,可得到平面,然后結(jié)合平面,可知平面平面;(3)連接,由(2)知,平面平面,可知即為與平面的夾角,求解即可.【題目詳解】(1)證明:連接,交于,則為中點(diǎn),連接OP,∵P為的中點(diǎn),∴,∵OP?平面,?平面,∴平面;(2)證明:長(zhǎng)方體中,,底面是正方形,則AC⊥BD,又⊥面,則.∵?平面,?平面,,∴平面.∵平面,∴平面平面;(3)解:連接,由(2)知,平面平面,∴即為與平面的夾角,在長(zhǎng)方體中,∵,∴.在中,.∴直線與平面的夾角為.【題目點(diǎn)撥】本題考查了線面平行、面面垂直的證明,考查了線面角的求法,考查了學(xué)生的空間想象能力和計(jì)算求解能力,屬于中檔題.20、(1)(2)【解題分析】試題分析:(1)根據(jù)題知,由向量的數(shù)量積公式進(jìn)行運(yùn)算即可,注意,在去括號(hào)的向量運(yùn)算過(guò)程中可采用多項(xiàng)式的運(yùn)算方法;(2)根據(jù)向量數(shù)量積公式,可先求出的值,又,從而可求出的值.試題解析:

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論