2024屆黑龍江省牡丹江市一中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
2024屆黑龍江省牡丹江市一中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
2024屆黑龍江省牡丹江市一中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
2024屆黑龍江省牡丹江市一中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
2024屆黑龍江省牡丹江市一中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆黑龍江省牡丹江市一中高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知圓,由直線上一點(diǎn)向圓引切線,則切線長的最小值為()A.1 B.2 C. D.2.已知為兩條不同的直線,為兩個不同的平面,給出下列命題:①若,,則;②若,,則;③若,,則;④若,,,則.其中正確的命題是()A.②③ B.①③ C.②④ D.①④3.若向量,的夾角為60°,且||=2,||=3,則|2|=()A.2 B.14 C.2 D.84.已知直線和互相平行,則它們之間的距離是()A. B. C. D.5.已知中,,,的對邊分別是,,,且,,,則邊上的中線的長為()A. B.C.或 D.或6.已知向量,,則與夾角的大小為()A. B. C. D.7.在中,,,為的外接圓的圓心,則()A. B.C. D.8.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.39.某市在“一帶一路”國際合作高峰論壇前夕,在全市高中學(xué)生中進(jìn)行“我和‘一帶一路’”的學(xué)習(xí)征文,收到的稿件經(jīng)分類統(tǒng)計(jì),得到如圖所示的扇形統(tǒng)計(jì)圖.又已知全市高一年級共交稿2000份,則高三年級的交稿數(shù)為()A.2800 B.3000 C.3200 D.340010.化簡:()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)當(dāng)時,函數(shù)取得最大值,則______.12.函數(shù)的最小正周期是________.13._______________。14.在邊長為2的正三角形ABC內(nèi)任取一點(diǎn)P,則使點(diǎn)P到三個頂點(diǎn)的距離至少有一個小于1的概率是________.15.若Sn為等比數(shù)列an的前n項(xiàng)的和,8a16.將無限循環(huán)小數(shù)化為分?jǐn)?shù),則所得最簡分?jǐn)?shù)為______;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角,,所對的邊分別為,,,且,.(1)求證:是銳角三角形;(2)若,求的面積.18.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.19.如圖所示,在平面四邊形中,為正三角形.(1)在中,角的對邊分別為,若,求角的大??;(2)求面積的最大值.20.的內(nèi)角所對邊分別為,已知.(1)求;(2)若,,求的面積.21.已知等差數(shù)列的前n項(xiàng)和為,且,.(1)求;(2)設(shè)數(shù)列的前n項(xiàng)和為,求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】

將圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)與半徑,求出圓心到直線的距離,利用切線的性質(zhì)及勾股定理求處切線長的最小值,即可得到答案.【題目詳解】將圓化為標(biāo)準(zhǔn)方程,得,所以圓心坐標(biāo)為,半徑為,則圓心到直線的距離為,所以切線長的最小值為,故選A.【題目點(diǎn)撥】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,其中解答中涉及到圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,以及數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.2、B【解題分析】

利用空間中線面平行、線面垂直、面面平行、面面垂直的判定與性質(zhì)即可作答.【題目詳解】垂直于同一條直線的兩個平面互相平行,故①對;平行于同一條直線的兩個平面相交或平行,故②錯;若,,,則或與為異面直線或與為相交直線,故④錯;若,則存在過直線的平面,平面交平面于直線,,又因?yàn)椋?,又因?yàn)槠矫?,所以,故③?故選B.【題目點(diǎn)撥】本題主要考查空間中,直線與平面平行或垂直的判定與性質(zhì),以及平面與平面平行或垂直的判定與性質(zhì),屬于基礎(chǔ)題型.3、A【解題分析】

由已知可得||,根據(jù)數(shù)量積公式求解即可.【題目詳解】||.故選A.【題目點(diǎn)撥】本題考查平面向量數(shù)量積的性質(zhì)及運(yùn)算,考查了利用數(shù)量積進(jìn)行向量模的運(yùn)算求解方法,屬于基礎(chǔ)題.4、D【解題分析】

由已知中直線和互相平行,求出的值,再根據(jù)兩條平行線間的距離公式求得它們之間的距離.【題目詳解】∵直線和互相平行,則,將直線的方程化為,則兩條平行直線之間的距離,===.故選:D.【題目點(diǎn)撥】本題主要考查兩條直線平行的性質(zhì),兩條平行線間的距離公式的應(yīng)用,屬于中檔題.5、C【解題分析】

由已知利用余弦定理可得,解得a值,由已知可求中線,在中,由余弦定理即可計(jì)算AB邊上中線的長.【題目詳解】解:,由余弦定理,可得,整理可得:,解得或1.如圖,CD為AB邊上的中線,則,在中,由余弦定理,可得:,或,解得AB邊上的中線或.故選C.【題目點(diǎn)撥】本題考查余弦定理在解三角形中的應(yīng)用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于基礎(chǔ)題.6、D【解題分析】

根據(jù)向量,的坐標(biāo)及向量夾角公式,即可求出,從而根據(jù)向量夾角的范圍即可求出夾角.【題目詳解】向量,,則;∴;∵0≤<a,b>≤π;∴<a,b>=.故選:D.【題目點(diǎn)撥】本題考查數(shù)量積表示兩個向量的夾角,已知向量坐標(biāo)代入夾角公式即可求解,屬于??碱}型,屬于簡單題.7、A【解題分析】

利用正弦定理可求出的外接圓半徑.【題目詳解】由正弦定理可得,因此,,故選A.【題目點(diǎn)撥】本題考查利用正弦定理求三角形外接圓的半徑,考查計(jì)算能力,屬于基礎(chǔ)題.8、A【解題分析】

利用余弦定理推論得出a,b,c關(guān)系,在結(jié)合正弦定理邊角互換列出方程,解出結(jié)果.【題目詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【題目點(diǎn)撥】本題考查正弦定理及余弦定理推論的應(yīng)用.9、D【解題分析】

先求出總的稿件的數(shù)量,再求出高三年級交稿數(shù)占總交稿數(shù)的比例,再求高三年級的交稿數(shù).【題目詳解】高一年級交稿2000份,在總交稿數(shù)中占比,所以總交稿數(shù)為,高二年級交稿數(shù)占總交稿數(shù)的,所以高三年級交稿數(shù)占總交稿數(shù)的,所以高三年級交稿數(shù)為.故選D【題目點(diǎn)撥】本題主要考查扇形統(tǒng)計(jì)圖的有關(guān)計(jì)算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.10、A【解題分析】

.故選A.【題目點(diǎn)撥】考查向量數(shù)乘和加法的幾何意義,向量加法的運(yùn)算.二、填空題:本大題共6小題,每小題5分,共30分。11、;【解題分析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,當(dāng)x-φ=2kπ+(k∈Z)時,函數(shù)f(x)取得最大值,即θ=2kπ++φ時,函數(shù)f(x)取到最大值,所以cosθ=-sinφ=-.12、【解題分析】

根據(jù)周期公式即可求解.【題目詳解】函數(shù)的最小正周期故答案為:【題目點(diǎn)撥】本題主要考查了正弦型函數(shù)的周期,屬于基礎(chǔ)題.13、【解題分析】

本題首先可根據(jù)同角三角函數(shù)關(guān)系式化簡得出,然后根據(jù)兩角差的正弦公式化簡得出,最后根據(jù)二倍角公式以及三角函數(shù)誘導(dǎo)公式即可得出結(jié)果?!绢}目詳解】,故答案為【題目點(diǎn)撥】本題考查根據(jù)三角函數(shù)相關(guān)公式進(jìn)行化簡求值,考查到的公式有、、以及,考查化歸與轉(zhuǎn)化思想,是中檔題。14、【解題分析】以A,B,C為圓心,以1為半徑作圓,與△ABC交出三個扇形,當(dāng)P落在其內(nèi)時符合要求,∴P==.15、-7【解題分析】設(shè)公比為q,則8a1q=-a116、【解題分析】

將設(shè)為,考慮即為,兩式相減構(gòu)造方程即可求解出的值,即可得到對應(yīng)的最簡分?jǐn)?shù).【題目詳解】設(shè),則,由可知,解得.故答案為:.【題目點(diǎn)撥】本題考查將無限循環(huán)小數(shù)化為最簡分?jǐn)?shù),主要采用方程的思想去計(jì)算,難度較易.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】

(1)由正弦定理、余弦定理得,則角C最大,由余弦定理可得答案.

(2)由平面向量數(shù)量積的運(yùn)算及三角形的面積公式結(jié)合(1)可得,利用面積公式可求解.【題目詳解】【題目詳解】

(1)由,根據(jù)正弦定理得,又,所以即,所以,因此邊最大,即角最大.設(shè)則即,所以是銳角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面積為.【題目點(diǎn)撥】本題考查正弦定理和余弦定理,數(shù)量積的定義的應(yīng)用和求三角形面積.18、(Ⅰ)(Ⅱ)().【解題分析】試題分析:(Ⅰ)運(yùn)用兩角和的正弦公式對f(x)化簡整理,由周期公式求ω的值;(Ⅱ)根據(jù)函數(shù)y=sinx的單調(diào)遞增區(qū)間對應(yīng)求解即可.試題解析:(Ⅰ)因?yàn)?,所以的最小正周期.依題意,,解得.(Ⅱ)由(Ⅰ)知.函數(shù)的單調(diào)遞增區(qū)間為().由,得.所以的單調(diào)遞增區(qū)間為().【考點(diǎn)】兩角和的正弦公式、周期公式、三角函數(shù)的單調(diào)性.【名師點(diǎn)睛】三角函數(shù)的單調(diào)性:1.三角函數(shù)單調(diào)區(qū)間的確定,一般先將函數(shù)式化為基本三角函數(shù)標(biāo)準(zhǔn)式,然后通過同解變形或利用數(shù)形結(jié)合方法求解.關(guān)于復(fù)合函數(shù)的單調(diào)性的求法;2.利用三角函數(shù)的單調(diào)性比較兩個同名三角函數(shù)值的大小,必須先看兩角是否同屬于這一函數(shù)的同一單調(diào)區(qū)間內(nèi),不屬于的,可先化至同一單調(diào)區(qū)間內(nèi).若不是同名三角函數(shù),則應(yīng)考慮化為同名三角函數(shù)或用差值法(例如與0比較,與1比較等)求解.19、(1);(2).【解題分析】

(1)由正弦和角公式,化簡三角函數(shù)表達(dá)式,結(jié)合正弦定理即可求得角的大小;(2)在中,設(shè),由余弦定理及正弦定理用表示出.再根據(jù)三角形面積公式表示出,即可結(jié)合正弦函數(shù)的圖像與性質(zhì)求得最大值.【題目詳解】(1)由題意可得:∴整理得∴∴∴又∴(2)在中,設(shè),由余弦定理得:,∵為正三角形,∴,在中,由正弦定理得:,∴,∴,∵,∵,∴為銳角,,,,∵∴當(dāng)時,.【題目點(diǎn)撥】本題考查了三角函數(shù)式的化簡變形,正弦定理與余弦定理在解三角形中的應(yīng)用,三角形面積的表示方法,正弦函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,屬于中檔題.20、(1);(2)5.【解題分析】

(1)根據(jù)正弦定理得,化簡即得C的值;(2)先利用余弦定理求出a的值,再求的面積.【題目詳解】(1)因?yàn)?,根?jù)正弦定理得,又,從而,由于,所以.(2)根據(jù)余弦定理,而,,,代入整理得,解得或(舍去).故的面積為.【題目點(diǎn)撥】本題主要考查正弦余弦定理解三角形,考查三角形面積的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.21、(1);(2)見解析【解題分析】

(1)設(shè)公差為,由,可得解得,,從而可得結(jié)果;(2)由(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論