2024屆四川省成都市雙流區(qū)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2024屆四川省成都市雙流區(qū)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2024屆四川省成都市雙流區(qū)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2024屆四川省成都市雙流區(qū)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2024屆四川省成都市雙流區(qū)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆四川省成都市雙流區(qū)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個圓柱的底面直徑與高都等于球的直徑,設(shè)圓柱的側(cè)面積為,球的表面積為,則()A. B. C. D.12.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知,a=2,c=,則C=A. B. C. D.3.在中,角,,所對的邊為,,,且為銳角,若,,,則()A. B. C. D.4.函數(shù)的圖象如圖所示,為了得到的圖象,則只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度5.若關(guān)于的不等式在區(qū)間上有解,則的取值范圍是()A. B. C. D.6.某廠家生產(chǎn)甲、乙、丙三種不同類型的飲品?產(chǎn)量之比為2:3:4.為檢驗該廠家產(chǎn)品質(zhì)量,用分層抽樣的方法抽取一個容量為72的樣本,則樣本中乙類型飲品的數(shù)量為A.16 B.24 C.32 D.487.如圖是函數(shù)的部分圖象,則下列命題中,正確的命題序號是①函數(shù)的最小正周期為②函數(shù)的振幅為③函數(shù)的一條對稱軸方程為④函數(shù)的單調(diào)遞增區(qū)間是⑤函數(shù)的解析式為A.③⑤ B.③④ C.④⑤ D.①③8.經(jīng)過兩條直線和的交點,且垂直于直線的直線方程為()A. B. C. D.9.直線,,的斜率分別為,,,如圖所示,則()A. B.C. D.10.設(shè)是兩條不同的直線,是兩個不同的平面,則下列命題中正確的個數(shù)為①若,,則②若,則③若,則④若,則A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.若是方程的解,其中,則______.12.設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項和為{Sn}.若,,則q=______________.13.已知,則.14.如果是奇函數(shù),則=.15.在數(shù)列中,是其前項和,若,,則___________.16.已知等比數(shù)列中,,,則該等比數(shù)列的公比的值是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知的三個內(nèi)角、、的對邊分別是、、,的面積,(Ⅰ)求角;(Ⅱ)若中,邊上的高,求的值.18.如圖,漁船甲位于島嶼的南偏西方向的處,且與島嶼相距12海里,漁船乙以10海里/小時的速度從島嶼出發(fā)沿正北方向航行,若漁船甲同時從處出發(fā)沿北偏東的方向追趕漁船乙,剛好用2小時追上.(1)求漁船甲的速度;(2)求的值.19.在某市高三教學(xué)質(zhì)量檢測中,全市共有名學(xué)生參加了本次考試,其中示范性高中參加考試學(xué)生人數(shù)為人,非示范性高中參加考試學(xué)生人數(shù)為人.現(xiàn)從所有參加考試的學(xué)生中隨機抽取人,作檢測成績數(shù)據(jù)分析.(1)設(shè)計合理的抽樣方案(說明抽樣方法和樣本構(gòu)成即可);(2)依據(jù)人的數(shù)學(xué)成績繪制了如圖所示的頻率分布直方圖,據(jù)此估計本次檢測全市學(xué)生數(shù)學(xué)成績的平均分;20.已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)若,為數(shù)列的前項和,求證:21.(1)已知,,且、都是第二象限角,求的值.(2)求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

由圓柱的側(cè)面積及球的表面積公式求解即可.【題目詳解】解:設(shè)圓柱的底面半徑為,則,則圓柱的側(cè)面積為,球的表面積為,則,故選:D.【題目點撥】本題考查了圓柱的側(cè)面積的求法,重點考查了球的表面積公式,屬基礎(chǔ)題.2、B【解題分析】

試題分析:根據(jù)誘導(dǎo)公式和兩角和的正弦公式以及正弦定理計算即可詳解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故選B.點睛:本題主要考查正弦定理及余弦定理的應(yīng)用,屬于難題.在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.3、D【解題分析】

利用正弦定理化簡,再利用三角形面積公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【題目詳解】由于,有正弦定理可得:,即由于在中,,,所以,聯(lián)立,解得:,由于為銳角,且,所以所以在中,由余弦定理可得:,故(負數(shù)舍去)故答案選D【題目點撥】本題考查正弦定理,余弦定理,以及面積公式在三角形求邊長中的應(yīng)用,屬于中檔題.4、D【解題分析】

先根據(jù)圖象確定A的值,進而根據(jù)三角函數(shù)結(jié)果的點求出求與的值,確定函數(shù)的解析式,然后根據(jù)誘導(dǎo)公式將函數(shù)化為余弦函數(shù),再平移即可得到結(jié)果.【題目詳解】由題意,函數(shù)的部分圖象,可得,即,所以,再根據(jù)五點法作圖,可得,求得,故.函數(shù)的圖象向左平移個單位,可得的圖象,則只要將的圖象向右平移個單位長度可得的圖象,故選:D.【題目點撥】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換的應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、A【解題分析】

利用分離常數(shù)法得出不等式在上成立,根據(jù)函數(shù)在上的單調(diào)性,求出的取值范圍【題目詳解】關(guān)于的不等式在區(qū)間上有解在上有解即在上成立,設(shè)函數(shù)數(shù),恒成立在上是單調(diào)減函數(shù)且的值域為要在上有解,則即的取值范圍是故選【題目點撥】本題是一道關(guān)于一元二次不等式的題目,解題的關(guān)鍵是掌握一元二次不等式的解法,分離含參量,然后求出結(jié)果,屬于基礎(chǔ)題.6、B【解題分析】

根據(jù)分層抽樣各層在總體的比例與在樣本的比例相同求解.【題目詳解】因為分層抽樣總體和各層的抽樣比例相同,所以各層在總體的比例與在樣本的比例相同,所以樣本中乙類型飲品的數(shù)量為.故選B.【題目點撥】本題考查分層抽樣,依據(jù)分層抽樣總體和各層的抽樣比例相同.7、A【解題分析】

根據(jù)圖象求出函數(shù)解析式,根據(jù)三角函數(shù)型函數(shù)的性質(zhì)逐一判定.【題目詳解】由圖象可知,,最大值為,,因為圖象過點,,由,即可判定錯,正確,由得對稱軸方程為,,故正確;由,,,函數(shù)的單調(diào)遞增區(qū)間是,故錯;故選:A【題目點撥】本題主要考查了根據(jù)圖象求正弦型函數(shù)函數(shù)的解析式,及正弦型函數(shù)的性質(zhì),屬于中檔題.8、D【解題分析】

首先求出兩條直線的交點坐標,再根據(jù)垂直求出斜率,點斜式寫方程即可.【題目詳解】有題知:,解得:,交點.直線的斜率為,所求直線斜率為.所求直線為:,即.故選:D【題目點撥】本題主要考查如何求兩條直線的交點坐標,同時考查了兩條直線的位置關(guān)系,屬于簡單題.9、A【解題分析】

根據(jù)題意可得出直線,,的傾斜角滿足,由傾斜角與斜率的關(guān)系得出結(jié)果.【題目詳解】解:設(shè)三條直線的傾斜角為,根據(jù)三條直線的圖形可得,因為,當時,,當時,單調(diào)遞增,且,故,即故選A.【題目點撥】本題考查了直線的傾斜角與斜率的關(guān)系,解題的關(guān)鍵是熟悉正切函數(shù)的單調(diào)性.10、A【解題分析】

根據(jù)面面垂直的定義判斷①③錯誤,由面面平行的性質(zhì)判斷②錯誤,由線面垂直性質(zhì)、面面垂直的判定定理判定④正確.【題目詳解】如圖正方體,平面是平面,平面是平面,但兩直線與不垂直,①錯;平面是平面,平面是平面,但兩直線與不平行,②錯;直線是直線,直線是直線,滿足,但平面與平面不垂直,③錯;由得,∵,過作平面與平面交于直線,則,于是,∴,④正確.∴只有一個命題正確.故選A.【題目點撥】本題考查空間直線與平面、平面與平面的位置關(guān)系.對一個命題不正確,可只舉一例說明即可.對正確的命題一般需要證明.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

把代入方程2cos(x+α)=1,化簡根據(jù)α∈(0,2π),確定函數(shù)值的范圍,求出α即可.【題目詳解】∵是方程2cos(x+α)=1的解,∴2cos(+α)=1,即cos(+α)=.又α∈(0,2π),∴+α∈(,).∴+α=.∴α=.故答案為【題目點撥】本題考查三角函數(shù)值的符號,三角函數(shù)的定義域,考查邏輯思維能力,屬于基礎(chǔ)題.12、【解題分析】將,兩個式子全部轉(zhuǎn)化成用,q表示的式子.即,兩式作差得:,即:,解之得:(舍去)13、【解題分析】試題分析:兩式平方相加并整理得,所以.注意公式的結(jié)構(gòu)特點,從整體去解決問題.考點:三角恒等變換.14、-2【解題分析】試題分析:∵,∴,∴,∴=-2考點:本題考查了三角函數(shù)的性質(zhì)點評:對于定義域為R的奇函數(shù)恒有f(0)=0.利用此結(jié)論可解決此類問題15、【解題分析】

令,可求出的值,令,由可求出的表達式,再檢驗是否符合時的表達式,由此可得出數(shù)列的通項公式.【題目詳解】當時,;當時,.不適合上式,因此,.故答案為:.【題目點撥】本題考查利用求數(shù)列的通項公式,一般利用,求解時還應(yīng)對是否滿足的表達式進行驗證,考查運算求解能力,屬于中等題.16、【解題分析】

根據(jù)等比通項公式即可求解【題目詳解】故答案為:【題目點撥】本題考查等比數(shù)列公比的求解,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解題分析】

(Ⅰ)由面積公式推出,代入所給等式可得,求出角C的余弦值從而求得角C;(Ⅱ)首先由求出邊c,再由面積公式代入相應(yīng)值求出邊b,利用余弦定理即可求出邊a.【題目詳解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,將代入中得,解得.【題目點撥】本題考查余弦定理解三角形,三角形面積公式,屬于基礎(chǔ)題.18、(1)14海里/小時;(2).【解題分析】

(1),∴∴,∴V甲海里/小時;(2)在中,由正弦定理得∴∴.點評:主要是考查了正弦定理和余弦定理的運用,屬于基礎(chǔ)題.19、(1)見解析;(2)92.4【解題分析】

(1)根據(jù)總體的差異性選擇分層抽樣,再結(jié)合抽樣比計算出非示范性高中和示范性高中所抽取的人數(shù);(2)將每個矩形底邊的中點值乘以相應(yīng)矩形的面積所得結(jié)果,再全部相加可得出本次測驗全市學(xué)生數(shù)學(xué)成績的平均分.【題目詳解】(1)由于總體有明顯差異的兩部分構(gòu)成,故采用分層抽樣,由題意,從示范性高中抽取人,從非師范性高中抽取人;(2)由頻率分布直方圖估算樣本平均分為推測估計本次檢測全市學(xué)生數(shù)學(xué)平均分為【題目點撥】本題考查分層抽樣以及計算頻率分布直方圖中的平均數(shù),著重考查學(xué)生對幾種抽樣方法的理解,以及頻率分布直方圖中幾個樣本數(shù)字的計算方法,屬于基礎(chǔ)題.20、(1).(2)證明見解析【解題分析】

(1)由,可得當時,,兩式相減可求數(shù)列的通項公式;(2)將帶入,再計算,通過裂項相消計算,即可證明出?!绢}目詳解】(1)解:∵,∴(,),兩式相減得:,∴.當時,,滿足上式,∴.(2)證明:由(1)知,∴,∴,∴.【題目點撥】本題考查利用公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論