版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省八校聯(lián)合體高一數(shù)學第二學期期末教學質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)的圖像上的所有點向右平移個單位長度,得到函數(shù)的圖像,若的部分圖像如圖所示,則函數(shù)的解析式為A. B.C. D.2.若,則是()A.等邊三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形3.在四邊形中,如果,,那么四邊形的形狀是()A.矩形 B.正方形 C.菱形 D.直角梯形4.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復賽資格的人數(shù)為()A.640 B.520 C.280 D.2405.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標,則點落在圓內(nèi)的概率為A. B. C. D.6.設是等差數(shù)列的前項和,若,則A. B. C. D.7.若直線:與直線:平行,則的值為()A.1 B.1或2 C.-2 D.1或-28.已知角的頂點在原點,始邊與軸的正半軸重合,終邊落在射線上,則()A. B. C. D.9.()A.0 B.1 C.-1 D.210.直線與圓相交于M,N兩點,若.則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,均為單位向量,它們的夾角為,那么__________.12.若函數(shù)圖象各點的橫坐標縮短為原來的一半,再向左平移個單位,得到的函數(shù)圖象離原點最近的的對稱中心是______.13.若圓弧長度等于圓內(nèi)接正六邊形的邊長,則該圓弧所對圓心角的弧度數(shù)為________.14.在平面直角坐標系xOy中,角與角均以Ox為始邊,它們的終邊關于y軸對稱.若,則________.15.某奶茶店的日銷售收入y(單位:百元)與當天平均氣溫x(單位:)之間的關系如下:x012y5221通過上面的五組數(shù)據(jù)得到了x與y之間的線性回歸方程:;但現(xiàn)在丟失了一個數(shù)據(jù),該數(shù)據(jù)應為____________.16.已知數(shù)列滿足:,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,.(1)求(2)若與垂直,求實數(shù)的值.18.已知等差數(shù)列滿足,且是的等比中項.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項和為,求使成立的最大正整數(shù)的值.19.李克強總理在2018年政府工作報告指出,要加快建設創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:單價(千元)銷量(百件)已知.(1)若變量具有線性相關關系,求產(chǎn)品銷量(百件)關于試銷單價(千元)的線性回歸方程;(2)用(1)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值.(參考公式:線性回歸方程中的估計值分別為)20.在中,內(nèi)角所對的邊分別為.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.21.如圖,在中,,點在邊上,(1)求的度數(shù);(2)求的長度.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
根據(jù)圖象求出A,ω和φ的值,得到g(x)的解析式,然后將g(x)圖象上的所有點向左平移個單位長度得到f(x)的圖象.【題目詳解】由圖象知A=1,(),即函數(shù)的周期T=π,則π,得ω=2,即g(x)=sin(2x+φ),由五點對應法得2φ=2kπ+π,k,得φ,則g(x)=sin(2x),將g(x)圖象上的所有點向左平移個單位長度得到f(x)的圖象,即f(x)=sin[2(x)]=sin(2x)=,故選C.【題目點撥】本題主要考查三角函數(shù)解析式的求解,結合圖象求出A,ω和φ的值以及利用三角函數(shù)的圖象變換關系是解決本題的關鍵.2、D【解題分析】
先根據(jù)題中條件,結合正弦定理得到,求出角,同理求出角,進而可判斷出結果.【題目詳解】因為,由正弦定理可得,所以,即,因為角為三角形內(nèi)角,所以;同理,;所以,因此,是等腰直角三角形.故選D【題目點撥】本題主要考查判定三角形的形狀問題,熟記正弦定理即可,屬于??碱}型.3、C【解題分析】試題分析:因為,所以,即四邊形的對角線互相垂直,排除選項AD;又因為,所以四邊形對邊平行且相等,即四邊形為平行四邊形,但不能確定鄰邊垂直,所以只能確定為菱形.考點:1.向量相等的定義;2.向量的垂直;4、B【解題分析】
由頻率分布直方圖得到初賽成績大于90分的頻率,由此能求出獲得復賽資格的人數(shù).【題目詳解】初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內(nèi),由頻率分布直方圖得到初賽成績大于90分的頻率為:1﹣(0.0025+0.0075+0.0075)×20=0.1.∴獲得復賽資格的人數(shù)為:0.1×800=2.故選:B.【題目點撥】本題考查頻率分布直方圖的應用,考查頻數(shù)的求法,考查頻率分布直方圖等基礎知識,是基礎題.5、B【解題分析】
由拋擲兩枚骰子得到點的坐標共有36種,再利用列舉法求得點落在圓內(nèi)所包含的基本事件的個數(shù),利用古典概型的概率計算公式,即可求解.【題目詳解】由題意知,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數(shù)作為點P的坐標,共有種結果,而滿足條件的事件是點P落在圓內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結果,根據(jù)古典概型概率公式,可得,故選B.【題目點撥】本題主要考查的是古典概型及其概率計算公式.,屬于基礎題.解題時要準確理解題意,先要判斷該概率模型是不是古典概型,正確找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù),令古典概型及其概率的計算公式求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.6、A【解題分析】,,選A.7、A【解題分析】試題分析:因為直線:與直線:平行,所以或-2,又時兩直線重合,所以.考點:兩條直線平行的條件.點評:此題是易錯題,容易選C,其原因是忽略了兩條直線重合的驗證.8、D【解題分析】
在的終邊上取點,然后根據(jù)三角函數(shù)的定義可求得答案.【題目詳解】在的終邊上取點,則,根據(jù)三角形函數(shù)的定義得.故選:D【題目點撥】本題考查了利用角的終邊上的點的坐標求三角函數(shù)值,屬于基礎題.9、A【解題分析】
直接利用三角函數(shù)的誘導公式化簡求值.【題目詳解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故選A.【題目點撥】本題考查利用誘導公式化簡求值,是基礎的計算題.10、A【解題分析】
可通過將弦長轉(zhuǎn)化為弦心距問題,結合點到直線距離公式和勾股定理進行求解【題目詳解】如圖所示,設弦中點為D,圓心C(3,2),弦心距,又,由勾股定理可得,答案選A【題目點撥】圓與直線的位置關系解題思路常從兩點入手:弦心距、勾股定理。處理過程中,直線需化成一般式二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】分析:由,均為單位向量,它們的夾角為,求出數(shù)量積,先將平方,再開平方即可的結果.詳解:∵,故答案為.點睛:平面向量數(shù)量積公式有兩種形式,一是,二是,主要應用以下幾個方面:(1)求向量的夾角,(此時往往用坐標形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).12、【解題分析】
由二倍角公式化簡函數(shù)式,然后由三角函數(shù)圖象變換得新解析式,結合正弦函數(shù)性質(zhì)得對稱中心.【題目詳解】由題意,經(jīng)過圖象變換后新函數(shù)解析式為,由,,,絕對值最小的是,因此所求對稱中心為.故答案為:.【題目點撥】本題考查三角函數(shù)的圖象變換,考查正弦函數(shù)的性質(zhì),考查二倍角公式,掌握正弦函數(shù)性質(zhì)是解題關鍵.13、1【解題分析】
根據(jù)圓的內(nèi)接正六邊形的邊長得出弧長,利用弧長公式即可得到圓心角.【題目詳解】因為圓的內(nèi)接正六邊形的邊長等于圓的半徑,所以圓弧長所對圓心角的弧度數(shù)為1.故答案為:1【題目點撥】此題考查弧長公式,根據(jù)弧長求圓心角的大小,關鍵在于熟記圓的內(nèi)接正六邊形的邊長.14、【解題分析】
由題意得出,結合誘導公式,二倍角公式求解即可.【題目詳解】,則角的終邊可能在第一、二象限由圖可知,無論角的終邊在第一象限還是第二象限,都有故答案為:【題目點撥】本題主要考查了利用二倍角的余弦公式以及誘導公式化簡求值,屬于基礎題.15、4【解題分析】
根據(jù)回歸直線經(jīng)過數(shù)據(jù)的中心點可求.【題目詳解】設丟失的數(shù)據(jù)為,則,,把代入回歸方程可得,故答案為:4.【題目點撥】本題主要考查回歸直線的特征,明確回歸直線一定經(jīng)過樣本數(shù)據(jù)的中心點是求解本題的關鍵,側重考查數(shù)學運算的核心素養(yǎng).16、0【解題分析】
先由條件得,然后【題目詳解】因為所以因為,且所以,即故答案為:0【題目點撥】本題考查的是數(shù)列的基礎知識,較簡單.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)-44;(2)【解題分析】
(1)利用已知條件求出,然后由向量的數(shù)量積坐標表示即可求出.(2)利用向量的垂直數(shù)量積為0,列出方程,求解即可.【題目詳解】(1)由題意得:,;(2)由與垂直得:,即,即,解得:.【題目點撥】本題主要考查向量的數(shù)量積的求法與應用.18、(1)(2)8【解題分析】
(1)設等差數(shù)列的公差為,根據(jù)題意列出有關和的方程組,可解出和的值,從而可求出數(shù)列的通項公式;(2)先得出,利用裂項法求出數(shù)列的前項和,然后解不等式,可得出的取值范圍,于此可得出的最大值.【題目詳解】(1)設等差數(shù)列的公差為,,即,∴,是,的等比中項,∴,即,解得.∴數(shù)列的通項公式為;(2)由(1)得∴.由,得,∴使得成立的最大正整數(shù)的值為8.【題目點撥】本題考查等差數(shù)列的通項公式,考查裂項求和法,解等差數(shù)列的通項公式,一般是利用方程思想求出等差數(shù)列的首項和公差,利用這兩個基本兩求出等差數(shù)列的通項公式,考查運算求解能力,屬于中等題.19、(1)(2),,,,,【解題分析】
(1)先計算,將數(shù)據(jù)代入公式得到,,線性回歸方程為(2)利用(1)中所求的線性回歸方程,代入數(shù)據(jù)分別計算得到答案.【題目詳解】(1)由,可求得,故,,,,代入可得,,所以所求的線性回歸方程為.(2)利用(1)中所求的線性回歸方程可得,當時,;當時,;當時,;當時,;當時,;當時,.【題目點撥】本題考查了線性回歸方程的計算,求估計值,意在考查學生的計算能力和對于回歸方程公式的理解應用.20、(Ⅰ).=.(Ⅱ).【解題分析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結果.試題解析:(Ⅰ)解:在中,因為,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值為,的值為.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關系,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保護鼻子小班健康教案反思
- 課阿拉伯帝國說課稿
- 環(huán)境污染治理分層管理辦法
- 二手房交易市場動態(tài)
- 養(yǎng)殖場客戶服務與滿意度
- 藥店設備養(yǎng)護管理辦法
- 公路聲屏障維護合同范本
- 文化產(chǎn)業(yè)招投標技術標范本
- 談判技巧培訓委托協(xié)議
- 城市供水合同談判教案
- 法檢商品目錄
- 中國恒大集團籌資狀況分析
- 消防火災自動報警主機更換(增加)施工方案
- 《加盟申請表》word版
- 鋼絲繩的規(guī)格和意義
- profibus現(xiàn)場總線故障診斷與排除
- 高考數(shù)學立體幾何中的翻折、軌跡及最值(范圍)問題
- 大學生生涯決策平衡單樣表
- 膠凝砂礫石施工方案
- 小學德育課程校本教材
- 金光修持法(含咒訣指印、步驟、利益說明)
評論
0/150
提交評論