版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆云南省紅河州瀘西縣第一中學數(shù)學高一第二學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點A(1,0),B(0,1),C(–2,–3),則△ABC的面積為A.3 B.2 C.1 D.2.一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是A.兩次都中靶B.至少有一次中靶C.兩次都不中靶D.只有一次中靶3.在同一直角坐標系中,函數(shù)且的圖象可能是()A. B.C. D.4.已知為的三個內(nèi)角的對邊,,的面積為2,則的最小值為().A. B. C. D.5.已知.為等比數(shù)列的前項和,若,,則()A.31 B.32 C.63 D.646.已知表示兩條不同的直線,表示三個不同的平面,給出下列四個命題:①,,,則;②,,,則;③,,,則;④,,,則其中正確的命題個數(shù)是()A.1 B.2 C.3 D.47.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)是()A. B. C. D.8.如圖是一圓錐的三視圖,正視圖和側(cè)視圖都是頂角為120°的等腰三角形,若過該圓錐頂點S的截面三角形面積的最大值為2,則該圓錐的側(cè)面積為A. B. C. D.49.已知,則下列4個角中與角終邊相同的是()A. B. C. D.10.我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈A.1盞 B.3盞C.5盞 D.9盞二、填空題:本大題共6小題,每小題5分,共30分。11.方程在區(qū)間內(nèi)解的個數(shù)是________12.已知等差數(shù)列的前項和為,且,,則;13.將2本不同的數(shù)學書和1本語文書在書架上隨機排成一行,則2本數(shù)學書相鄰的概率為________.14.已知公式,,借助這個公式,我們可以求函數(shù)的值域,則該函數(shù)的值域是______.15.已知中,,且,則面積的最大值為__________.16.已知數(shù)列的通項公式為是數(shù)列的前n項和,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在三棱錐中,平面平面,,,分別是棱,上的點(1)為的中點,求證:平面平面.(2)若,平面,求的值.18.如圖1所示,在四邊形中,,且,,.(1)求的面積;(2)若,求的長.圖1圖219.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求內(nèi)角B的大小;(2)設(shè),,的最大值為5,求k的值.20.在中,已知角的對邊分別為,且.(1)求角的大??;(2)若,,求的面積.21.如圖,為方便市民游覽市民中心附近的“網(wǎng)紅橋”,現(xiàn)準備在河岸一側(cè)建造一個觀景臺,已知射線,為兩邊夾角為的公路(長度均超過千米),在兩條公路,上分別設(shè)立游客上下點,,從觀景臺到,建造兩條觀光線路,,測得千米,千米.(1)求線段的長度;(2)若,求兩條觀光線路與之和的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
由兩點式求得直線的方程,利用點到直線距離公式求得三角形的高,由兩點間距離公式求得的長,從而根據(jù)三角形面積公式可得結(jié)果.【題目詳解】∵點A(1,0),B(0,1),∴直線AB的方程為x+y–1=0,,又∵點C(–2,–3)到直線AB的距離為,∴△ABC的面積為S=.故選A.【題目點撥】本題主要考查兩點間的距離公式,點到直線的距離公式、三角形面積公式以及直線方程的應用,意在考查綜合運用所學知識解答問題的能力,屬于中檔題.2、A【解題分析】
利用對立事件、互斥事件的定義直接求解.【題目詳解】一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是兩次都中靶.故選:A.【題目點撥】本題考查互事件的判斷,是中檔題,解題時要認真審題,注意對立事件、互斥事件的定義的合理運用.3、D【解題分析】
本題通過討論的不同取值情況,分別討論本題指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和,結(jié)合選項,判斷得出正確結(jié)論.題目不難,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【題目詳解】當時,函數(shù)過定點且單調(diào)遞減,則函數(shù)過定點且單調(diào)遞增,函數(shù)過定點且單調(diào)遞減,D選項符合;當時,函數(shù)過定點且單調(diào)遞增,則函數(shù)過定點且單調(diào)遞減,函數(shù)過定點且單調(diào)遞增,各選項均不符合.綜上,選D.【題目點撥】易出現(xiàn)的錯誤有,一是指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和性質(zhì)掌握不熟,導致判斷失誤;二是不能通過討論的不同取值范圍,認識函數(shù)的單調(diào)性.4、D【解題分析】
運用三角形面積公式和余弦定理,結(jié)合三角函數(shù)的輔助角公式和正弦型函數(shù)的值域最后可求出的最小值.【題目詳解】因為,所以,即,令,可得,于是有,因此,即,所以的最小值為,故本題選D.【題目點撥】本題考查了余弦定理、三角形面積公式,考查了輔助角公式,考查了數(shù)學運算能力.5、C【解題分析】
首先根據(jù)題意求出和的值,再計算即可.【題目詳解】有題知:,解得,.故選:C【題目點撥】本題主要考查等比數(shù)列的性質(zhì)以及前項和的求法,屬于簡單題.6、B【解題分析】
根據(jù)線面和線線平行與垂直的性質(zhì)逐個判定即可.【題目詳解】對①,,,不一定有,故不一定成立.故①錯誤.對②,令為底面為直角三角形的直三棱柱的三個側(cè)面,且,,,但此時,故不一定成立.故②錯誤.對③,,,,則成立.故③正確.對④,若,,則,或,又,則.故④正確.綜上,③④正確.故選:B【題目點撥】本題主要考查了根據(jù)線面、線線平行與垂直的性質(zhì)判斷命題真假的問題,需要根據(jù)題意舉出反例或者根據(jù)判定定理判定,屬于中檔題.7、B【解題分析】由三視圖可知,該幾何體是一個棱長為的正方體挖去一個圓錐的組合體,正方體體積為,圓錐體積為幾何體的體積為,故選B.【方法點睛】本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響.8、B【解題分析】
過該圓錐頂點S的截面三角形面積最大是直角三角形,根據(jù)面積為2求出圓錐的母線長,再根據(jù)正視圖求圓錐底面圓的半徑,最后根據(jù)扇形面積公式求圓錐的側(cè)面積.【題目詳解】過該圓錐頂點S的截面三角形面積最直角三角形,設(shè)圓錐的母線長和底面圓的半徑分別為,則,即,又,所以圓錐的側(cè)面積;故選B.【題目點撥】本題考查三視圖及圓錐有關(guān)計算,此題主要難點在于判斷何時截面三角形面積最大,要結(jié)合三角形的面積公式,當,即截面是等腰直角三角時面積最大.9、C【解題分析】
先寫出與角終邊相同的角的集合,再給k取值得解.【題目詳解】由題得與角終邊相同的集合為,當k=6時,.所以與角終邊相同的角為.故選C【題目點撥】本題主要考查終邊相同的角的求法,意在考查學生對該知識的理解掌握水平.10、B【解題分析】
設(shè)塔頂?shù)腶1盞燈,由題意{an}是公比為2的等比數(shù)列,∴S7==181,解得a1=1.故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、4.【解題分析】分析:通過二倍角公式化簡得到,進而推斷或,進而求得結(jié)果.詳解:,所以或,因為,所以或或或,故解的個數(shù)是4.點睛:該題考查的是有關(guān)方程解的個數(shù)問題,在解題的過程中,涉及到的知識點有正弦的倍角公式,方程的求解問題,注意一定不要兩邊除以,最后求得結(jié)果.12、1【解題分析】
若數(shù)列{an}為等差數(shù)列則Sm,S2m-Sm,S3m-S2m仍然成等差數(shù)列.所以S10,S20-S10,S30-S20仍然成等差數(shù)列.因為在等差數(shù)列{an}中有S10=10,S20=30,所以S30=1.故答案為1.13、【解題分析】2本不同的數(shù)學書和1本語文書在書架上隨機排成一行,所有的基本事件有(數(shù)學1,數(shù)學2,語文),(數(shù)學1,語文,數(shù)學2),(數(shù)學2,數(shù)學1,語文),(數(shù)學2,語文,數(shù)學1),(語文,數(shù)學1,數(shù)學2),(語文,數(shù)學2,數(shù)學1)共6個,其中2本數(shù)學書相鄰的有(數(shù)學1,數(shù)學2,語文),(數(shù)學2,數(shù)學1,語文),(語文,數(shù)學1,數(shù)學2),(語文,數(shù)學2,數(shù)學1)共4個,故2本數(shù)學書相鄰的概率.14、【解題分析】
根據(jù)題意,可令,結(jié)合,再進行整體代換即可求解【題目詳解】令,則,,,則,,,則函數(shù)值域為故答案為:【題目點撥】本題考查3倍角公式的使用,函數(shù)的轉(zhuǎn)化思想,屬于中檔題15、【解題分析】
先利用正弦定理求出c=2,分析得到當點在的垂直平分線上時,邊上的高最大,的面積最大,利用余弦定理求出,最后求面積的最大值.【題目詳解】由可得,由正弦定理,得,故,當點在的垂直平分線上時,邊上的高最大,的面積最大,此時.由余弦定理知,,即,故面積的最大值為.故答案為【題目點撥】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.16、【解題分析】
對數(shù)列的通項公式進行整理,再求其前項和,利用對數(shù)運算規(guī)則,可得到,從而求出,得到答案.【題目詳解】所以所以.故答案為:.【題目點撥】本題考查對數(shù)運算公式,由數(shù)列的通項求前項和,數(shù)列的極限,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解題分析】
(1)根據(jù)等腰三角形的性質(zhì),證得,由面面垂直的性質(zhì)定理,證得平面,進而證得平面平面.(2)根據(jù)線面平行的性質(zhì)定理,證得,平行線分線段成比例,由此求得的值.【題目詳解】(1),為的中點,所以.又因為平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【題目點撥】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查線面平行的性質(zhì)定理,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1);(2).【解題分析】
(1)利用已知條件求出D角的正弦函數(shù)值,然后求△ACD的面積;
(2)利用余弦定理求出AC,通過,利用余弦定理求解AB的長.【題目詳解】(1)因為,,所以,又,所以,所以.(2)由余弦定理可得,因為,所以,解得.【題目點撥】本題考查余弦定理以及正弦定理的應用,基本知識的考查,考查學生分析解決問題的能力,屬于中檔題.19、(1),(2)【解題分析】
解:(1)(3分)又在中,,所以,則………(5分)(2),.………………(8分)又,所以,所以.所以當時,的最大值為.………(10分)………(12分)20、(1);(2).【解題分析】
(1)利用邊角互化思想得,由結(jié)合兩角和的正弦公式可求出的值,于此得出角的大??;(2)由余弦定理可計算出,再利用三角形的面積公式可得出的面積.【題目詳解】(1)∵是的內(nèi)角,∴且,又由正弦定理:得:,化簡得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面積為.【題目點撥】本題考查正弦定理邊角互化的思想,考查余弦定理以及三角形的面積公式,本題巧妙的地方在于將配湊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年數(shù)控銑床項目規(guī)劃申請報告模范
- 2024-2025學年宣城市寧國市三上數(shù)學期末監(jiān)測試題含解析
- 2025年醫(yī)用植入材料項目提案報告模范
- 2025年掃瞄隧道顯微鏡項目立項申請報告模稿
- 二年級上冊語文教學計劃集合5篇
- 專科生求職信合集7篇
- 銷售主管個人述職報告
- 教育的實習報告范文九篇
- 員工離職報告(匯編15篇)
- 《觀察物體(二)》教學實錄-2023-2024學年四年級下冊數(shù)學人教版
- 智能化實驗室建設(shè)方案
- 福建省福州市倉山區(qū)2023-2024學年六年級上學期期末數(shù)學試卷
- 師德師風自評情況對照《新時代高校教師職業(yè)行為十項準則》
- 醫(yī)療器械安全生產(chǎn)培訓
- 2023年電池Pack結(jié)構(gòu)設(shè)計工程師年度總結(jié)及下年規(guī)劃
- 《科技改善生活》主題班會教案內(nèi)容
- 2022年湖南工商大學數(shù)據(jù)科學與大數(shù)據(jù)技術(shù)專業(yè)《計算機網(wǎng)絡(luò)》科目期末試卷A(有答案)
- (完整版)18項醫(yī)院核心制度:免修版模板范本
- 西北大學信息科學與技術(shù)學院
- 基于PLC的自動打鈴控制器
- 中式烹調(diào)技藝教案
評論
0/150
提交評論