2024屆河南省淮陽縣第一高級中學(xué)數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第1頁
2024屆河南省淮陽縣第一高級中學(xué)數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第2頁
2024屆河南省淮陽縣第一高級中學(xué)數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第3頁
2024屆河南省淮陽縣第一高級中學(xué)數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第4頁
2024屆河南省淮陽縣第一高級中學(xué)數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河南省淮陽縣第一高級中學(xué)數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在三棱柱中,已知,,此三棱柱各個頂點都在一個球面上,則球的體積為().A. B. C. D.2.在等差數(shù)列an中,若a2+A.100 B.90 C.95 D.203.設(shè),表示兩條直線,,表示兩個平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知扇形的半徑為,面積為,則這個扇形圓心角的弧度數(shù)為()A. B. C.2 D.45.已知點和點,且,則實數(shù)的值是()A.5或-1 B.5或1 C.2或-6 D.-2或66.一只小狗在圖所示的方磚上走來走去,最終停在涂色方磚的概率為()A. B. C. D.7.如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點F是PB上一點,則下列判斷中不正確的是()﹒A.平面PAC B. C. D.平面平面PBC8.設(shè),,均為正實數(shù),則三個數(shù),,()A.都大于2 B.都小于2C.至少有一個不大于2 D.至少有一個不小于29.已知角α終邊上一點P(-2,3),則cos(A.32 B.-32 C.10.已知在三角形中,,點都在同一個球面上,此球面球心到平面的距離為,點是線段的中點,則點到平面的距離是()A. B. C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,梯形中,,于,,分別是,的中點,將四邊形沿折起(不與平面重合),以下結(jié)論①面;②;③.則不論折至何位置都有_______.12.有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內(nèi)放一個半徑為的鐵球,并注入水,使水面與球正好相切,然后將球取出,則這時容器中水的深度為___________.13.設(shè),為單位向量,其中,,且在方向上的射影數(shù)量為2,則與的夾角是___.14.在銳角中,角的對邊分別為.若,則角的大小為為____.15.?dāng)?shù)列中,,以后各項由公式給出,則等于_____.16.若函數(shù),的最大值為,則的值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期和單調(diào)遞增區(qū)間;(2)若方程在有兩個不同的實根,求的取值范圍.18.如果定義在上的函數(shù),對任意的,都有,則稱該函數(shù)是“函數(shù)”.(I)分別判斷下列函數(shù):①;②;③,是否為“函數(shù)”?(直接寫出結(jié)論)(II)若函數(shù)是“函數(shù)”,求實數(shù)的取值范圍.(III)已知是“函數(shù)”,且在上單調(diào)遞增,求所有可能的集合與19.已知函數(shù).(1)求函數(shù)的值域和單調(diào)減區(qū)間;(2)已知為的三個內(nèi)角,且,,求的值.20.若函數(shù)滿足且,則稱函數(shù)為“函數(shù)”.(1)試判斷是否為“函數(shù)”,并說明理由;(2)函數(shù)為“函數(shù)”,且當(dāng)時,,求的解析式,并寫出在上的單調(diào)遞增區(qū)間;(3)在(2)的條件下,當(dāng)時,關(guān)于的方程為常數(shù)有解,記該方程所有解的和為,求.21.已知中,角的對邊分別為.已知,.(Ⅰ)求角的大??;(Ⅱ)設(shè)點滿足,求線段長度的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】試題分析:直三棱柱的各項點都在同一個球面上,如圖所示,所以中,,所以下底面的外心為的中點,同理,可得上底面的外心為的中點,連接,則與側(cè)棱平行,所以平面,再取的中點,可得點到的距離相等,所以點是三棱柱的為接球的球心,因為直角中,,所以,即外接球的半徑,因此三棱柱外接球的體積為,故選A.考點:組合體的結(jié)構(gòu)特征;球的體積公式.【方法點晴】本題主要考查了球的組合體的結(jié)構(gòu)特征、球的體積的計算,其中解答中涉及到三棱柱的線面位置關(guān)系、直三棱柱的結(jié)構(gòu)特征、球的性質(zhì)和球的體積公式等知識點的綜合考查,著重考查了學(xué)生分析問題和解答問題的能力,以及推理與運算能力和學(xué)生的空間想象能力,試題有一定的難度,屬于中檔試題.2、B【解題分析】

利用等差數(shù)列的性質(zhì),即下標(biāo)和相等對應(yīng)項的和相等,得到a2【題目詳解】∵數(shù)列an為等差數(shù)列,a∴a【題目點撥】考查等差數(shù)列的性質(zhì)、等差中項,考查基本量法求數(shù)列問題.3、D【解題分析】

對選項進行一一判斷,選項D為面面垂直判定定理.【題目詳解】對A,與可能異面,故A錯;對B,可能在平面內(nèi);對C,與平面可能平行,故C錯;對D,面面垂直判定定理,故選D.【題目點撥】本題考查空間中線、面位置關(guān)系,判斷一個命題為假命題,只要能舉出反例即可.4、D【解題分析】

利用扇形面積,結(jié)合題中數(shù)據(jù),建立關(guān)于圓心角的弧度數(shù)的方程,即可解得.【題目詳解】解:設(shè)扇形圓心角的弧度數(shù)為,因為扇形所在圓的半徑為,且該扇形的面積為,則扇形的面積為,解得:.故選:D.【題目點撥】本題在已知扇形面積和半徑的情況下,求扇形圓心角的弧度數(shù),著重考查了弧度制的定義和扇形面積公式等知識,屬于基礎(chǔ)題.5、A【解題分析】

根據(jù)空間中兩點間距離公式建立方程求得結(jié)果.【題目詳解】解得:或本題正確選項:【題目點撥】本題考查空間中兩點間距離公式的應(yīng)用,屬于基礎(chǔ)題.6、C【解題分析】

方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可計算出所求事件的概率.【題目詳解】由圖形可知,方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可知,小狗最終停在涂色方磚的概率為,故選:C.【題目點撥】本題考查利用幾何概型概率公式計算事件的概率,解題時要理解事件的基本類型,正確選擇古典概型和幾何概型概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.7、C【解題分析】

根據(jù)線面垂直的性質(zhì)及判定,可判斷ABC選項,由面面垂直的判定可判斷D.【題目詳解】對于A,PA垂直于以AB為直徑的圓所在平面,而底面圓面,則,又由圓的性質(zhì)可知,且,則平面PAC.所以A正確;對于B,由A可知,由題意可知,且,所以平面,而平面,所以,所以B正確;對于C,由B可知平面,因而與平面不垂直,所以不成立,所以C錯誤.對于D,由A、B可知,平面PAC,平面,由面面垂直的性質(zhì)可得平面平面PBC.所以D正確;綜上可知,C為錯誤選項.故選:C.【題目點撥】本題考查了線面垂直的性質(zhì)及判定,面面垂直的判定定理,屬于基礎(chǔ)題.8、D【解題分析】

由題意得,當(dāng)且僅當(dāng)時,等號成立,所以至少有一個不小于,故選D.9、A【解題分析】角α終邊上一點P(-2,3),所以cos(10、D【解題分析】

利用數(shù)形結(jié)合,計算球的半徑,可得半徑為2,進一步可得該幾何體為正四面體,可得結(jié)果.【題目詳解】如圖據(jù)題意可知:點都在同一個球面上可知為的外心,故球心必在過且垂直平面的垂線上因為,所以球心到平面的距離為即,又所以同理可知:所以該幾何體為正四面體,由點是線段的中點所以,且平面,故平面所以點到平面的距離是故選:D【題目點撥】本題考查空間幾何體的應(yīng)用,以及點到面的距離,本題難點在于得到該幾何體為正四面體,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、①②【解題分析】

根據(jù)題意作出折起后的幾何圖形,再根據(jù)線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識即可判斷各選項的真假.【題目詳解】作出折起后的幾何圖形,如圖所示:.因為,分別是,的中點,所以是的中位線,所以.而面,所以面,①正確;無論怎樣折起,始終有,所以面,即有,而,所以,②正確;折起后,面,面,且,故與是異面直線,③錯誤.故答案為:①②.【題目點撥】本題主要考查線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識的應(yīng)用,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于基礎(chǔ)題.12、15【解題分析】

根據(jù)球的半徑,先求得球的體積;根據(jù)圓與等邊三角形關(guān)系,設(shè)出的邊長為,由面積關(guān)系表示出圓錐的體積;設(shè)拿出鐵球后水面高度為,用表示出水的體積,由即可求得液面高度.【題目詳解】因為鐵球半徑為,所以由球的體積公式可得,設(shè)的邊長為,則由面積公式與內(nèi)切圓關(guān)系可得,解得,則圓錐的高為.則圓錐的體積為,設(shè)拿出鐵球后的水面為,且到的距離為,如下圖所示:則由,可得,所以拿出鐵球后水的體積為,由,可知,解得,即將鐵球取出后容器中水的深度為15.故答案為:15.【題目點撥】本題考查了圓錐內(nèi)切球性質(zhì)的應(yīng)用,球的體積公式及圓錐體積公式的求法,屬于中檔題.13、【解題分析】

利用在方向上的射影數(shù)量為2可得:,即可整理得:,問題得解.【題目詳解】因為在方向上的射影數(shù)量為2,所以,整理得:又,為單位向量,所以.設(shè)與的夾角,則所以與的夾角是【題目點撥】本題主要考查了向量射影的概念及方程思想,還考查了平面向量夾角公式應(yīng)用,考查轉(zhuǎn)化能力及計算能力,屬于中檔題.14、【解題分析】由,兩邊同除以得,由余弦定理可得是銳角,,故答案為.15、【解題分析】

可以利用前項的積與前項的積的關(guān)系,分別求得第三項和第五項,即可求解,得到答案.【題目詳解】由題意知,數(shù)列中,,且,則當(dāng)時,;當(dāng)時,,則,當(dāng)時,;當(dāng)時,,則,所以.【題目點撥】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,其中解答中熟練的應(yīng)用遞推關(guān)系式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解題分析】

利用兩角差的正弦公式化簡函數(shù)的解析式為,由的范圍可得的范圍,根據(jù)最大值可得的值.【題目詳解】∵函數(shù)=2()=,∵,∴∈[,],又∵的最大值為,所以的最大值為,即=,解得.故答案為【題目點撥】本題主要考查兩角差的正弦公式的應(yīng)用,正弦函數(shù)的定義域和最值,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正周期,;(2).【解題分析】

(1)利用兩角差的余弦公式、倍角公式、輔助角公式得,求得周期;(2)利用換元法令,將問題轉(zhuǎn)化成方程在有兩個不同的實根,再利用圖象得的取值范圍.【題目詳解】(1),所以的最小正周期,由得:,所以的單調(diào)遞增區(qū)間是.(2)令,因為,所以,即方程在有兩個不同的實根,由函數(shù)的圖象可知,當(dāng)時滿足題意,所以的取值范圍為.【題目點撥】第(1)問考查三角恒等變換的綜合運用;第二問考查換元法求參數(shù)的取值范圍,注意在換元的過程中參數(shù)不能出錯,否則轉(zhuǎn)化后的問題與原問題就不等價.18、(I)①、②是“函數(shù)”,③不是“函數(shù)”;(II)的取值范圍為;(III),【解題分析】試題分析:(1)根據(jù)“β函數(shù)”的定義判定.①、②是“β函數(shù)”,③不是“β函數(shù)”;(2)由題意,對任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由題意,對任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得實數(shù)a的取值范圍(3)對任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,驗證。(I)①、②是“函數(shù)”,③不是“函數(shù)”.(II)由題意,對任意的,,即.因為,所以.故.由題意,對任意的,,即.故實數(shù)的取值范圍為.(Ⅲ)()對任意的(a)若且,則,,這與在上單調(diào)遞增矛盾,(舍),(b)若且,則,這與是“函數(shù)”矛盾,(舍).此時,由的定義域為,故對任意的,與恰有一個屬于,另一個屬于.()假設(shè)存在,使得,則由,故.(a)若,則,矛盾,(b)若,則,矛盾.綜上,對任意的,,故,即,則.()假設(shè),則,矛盾.故故,.經(jīng)檢驗,.符合題意點睛:此題是新定義的題目,根據(jù)已知的新概念,新信息來馬上應(yīng)用到題型中,根據(jù)函數(shù)的定義即函數(shù)沒有關(guān)于原點對稱的部分即可,故可以從圖像的角度來研究函數(shù);第三問可以假設(shè)存在,最后推翻結(jié)論即可。19、(1),;(2).【解題分析】

(1)將函數(shù)化簡,利用三角函數(shù)的取值范圍的單調(diào)性得到答案.(2)通過函數(shù)計算,,再計算代入數(shù)據(jù)得到答案.【題目詳解】(1)∵且∴故所求值域為由得:所求減區(qū)間:;(2)∵是的三個內(nèi)角,,∴∴又,即又∵,∴,故,故.【題目點撥】本題考查了三角函數(shù)的最值,單調(diào)性,角度的大小,意在考查學(xué)生對于三角函數(shù)公式性質(zhì)的靈活運用.20、(1)不是“M函數(shù)”;(2),;(3).【解題分析】

由不滿足,得不是“M函數(shù)”,可得函數(shù)的周期,,當(dāng)時,當(dāng)時,在上的單調(diào)遞增區(qū)間:,由可得函數(shù)在上的圖象,根據(jù)圖象可得:當(dāng)或1時,為常數(shù)有2個解,其和為當(dāng)時,為常數(shù)有3個解,其和為.當(dāng)時,為常數(shù)有4個解,其和為即可得當(dāng)時,記關(guān)于x的方程為常數(shù)所有解的和為,【題目詳解】不是“M函數(shù)”.,,不是“M函數(shù)”.函數(shù)滿足,函數(shù)的周期,,當(dāng)時,當(dāng)時,,在上的單調(diào)遞增區(qū)間:,;由可得函數(shù)在上的圖象為:當(dāng)或1時,為常數(shù)有2個解,其和為.當(dāng)時,為常數(shù)有3個解,其和為.當(dāng)時,為常數(shù)有4個解,其和為當(dāng)時,記關(guān)于x的方程為常數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論