![山東省巨野縣第一中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view11/M02/3D/25/wKhkGWWkDsGAVmmSAAHEiRdUSYA749.jpg)
![山東省巨野縣第一中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view11/M02/3D/25/wKhkGWWkDsGAVmmSAAHEiRdUSYA7492.jpg)
![山東省巨野縣第一中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view11/M02/3D/25/wKhkGWWkDsGAVmmSAAHEiRdUSYA7493.jpg)
![山東省巨野縣第一中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view11/M02/3D/25/wKhkGWWkDsGAVmmSAAHEiRdUSYA7494.jpg)
![山東省巨野縣第一中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view11/M02/3D/25/wKhkGWWkDsGAVmmSAAHEiRdUSYA7495.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省巨野縣第一中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,且,則的最大值為()A. B.1 C. D.2.已知等比數(shù)列的前n項和為,若,,則()A. B. C.1 D.23.若,則下列不等式不成立的是()A. B. C. D.4.已知三角形ABC,如果,則該三角形形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上選項均有可能5.設(shè),,則的值可表示為()A. B. C. D.6.已知,是平面,m,n是直線,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則7.在長方體中,,,,則異面直線與所成角的大小為()A. B. C. D.或8.在中,內(nèi)角所對的邊分別為,且,則()A. B. C. D.9.已知扇形圓心角為,面積為,則扇形的弧長等于()A. B. C. D.10.平面過正方體ABCD—A1B1C1D1的頂點A,,,,則m,n所成角的正弦值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在水平放置的邊長為1的正方形中隨機(jī)撤1000粒豆子,有400粒落到心形陰影部分上,據(jù)此估計心形陰影部分的面積為_________.12.函數(shù)的值域是________13.已知向量,滿足,且在方向上的投影是,則實數(shù)_______.14.已知為等差數(shù)列,,前n項和取得最大值時n的值為___________.15.已知x,y=R+,且滿足x2y6,若xy的最大值與最小值分別為M和m,M+m=_____.16.已知圓錐的母線長為1,側(cè)面展開圖的圓心角為,則該圓錐的體積是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓,點,直線.(1)求與直線l垂直,且與圓C相切的直線方程;(2)在x軸上是否存在定點B(不同于點A),使得對于圓C上任一點P,為常數(shù)?若存在,試求這個常數(shù)值及所有滿足條件的點B的坐標(biāo);若不存在,請說明理由.18.在△ABC中,中線長AM=2.(1)若=-2,求證:++=0;(2)若P為中線AM上的一個動點,求·(+)的最小值.19.求下列各式的值:(1)求的值;(2)已知,,且,,求的值.20.已知角的終邊經(jīng)過點,且.(1)求的值;(2)求的值.21.在中,角A,B,C的對邊分別為a,b,c,若,.(1)求角A的大??;(2)若,求的周長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
根據(jù)正弦定理將已知等式化簡得,再根據(jù)差角正切公式以及基本不等式可得結(jié)論.【題目詳解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,當(dāng)且僅當(dāng),即時取等號.故選:D.【題目點撥】本題考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.2、C【解題分析】
利用等比數(shù)列的前項和公式列出方程組,能求出首項.【題目詳解】等比數(shù)列的前項和為,,,,解得,.故選:.【題目點撥】本題考查等比數(shù)列的首項的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.3、B【解題分析】
根據(jù)不等式的基本性質(zhì)、重要不等式、函數(shù)的單調(diào)性即可得出結(jié)論.【題目詳解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指數(shù)函數(shù)在上單調(diào)遞增,且,∴,故D成立;故選:B.【題目點撥】本題主要考查不等式的基本性質(zhì),作差法比較大小,屬于基礎(chǔ)題.4、B【解題分析】
由正弦定理化簡已知可得:,由余弦定理可得,可得為鈍角,即三角形的形狀為鈍角三角形.【題目詳解】由正弦定理,,可得,化簡得,由余弦定理可得:,又,為鈍角,即三角形為鈍角三角形.故選:B.【題目點撥】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.5、A【解題分析】
由,可得到,然后根據(jù)反余弦函數(shù)的圖象與性質(zhì)即可得到答案.【題目詳解】因為,所以,則.故選:A【題目點撥】本題主要考查反余弦函數(shù)的運(yùn)用,熟練掌握反余弦函數(shù)的概念及性質(zhì)是解決本題的關(guān)鍵.6、D【解題分析】
由題意找到反例即可確定錯誤的選項.【題目詳解】如圖所示,在正方體中,取直線m為,平面為,滿足,取平面為平面,則的交線為,很明顯m和n為異面直線,不滿足,選項D錯誤;如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以A正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以B正確;由A選項和面面垂直的判定定理可得C也正確.本題答案為D.【題目點撥】本題主要考查線面關(guān)系有關(guān)命題真假的判斷,意在考查學(xué)生的轉(zhuǎn)化能力和邏輯推理能力,屬基礎(chǔ)題.7、C【解題分析】
平移CD到AB,則即為異面直線與所成的角,在直角三角形中即可求解.【題目詳解】連接AC1,CD//AB,可知即為異面直線與所成的角,在中,,故選.【題目點撥】本題考查異面直線所成的角.常用方法:1、平移直線到相交;2、向量法.8、C【解題分析】
根據(jù)題目條件結(jié)合三角形的正弦定理以及三角形內(nèi)角和定理可得sinA,進(jìn)而利用二倍角余弦公式得到結(jié)果.【題目詳解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故選C【題目點撥】本題考查了正弦定理及二倍角余弦公式的靈活運(yùn)用,考查計算能力,屬于基礎(chǔ)題.9、C【解題分析】
根據(jù)扇形面積公式得到半徑,再計算扇形弧長.【題目詳解】扇形弧長故答案選C【題目點撥】本題考查了扇形的面積和弧長公式,解出扇形半徑是解題的關(guān)鍵,意在考查學(xué)生的計算能力.10、A【解題分析】
試題分析:如圖,設(shè)平面平面=,平面平面=,因為平面,所以,則所成的角等于所成的角.延長,過作,連接,則為,同理為,而,則所成的角即為所成的角,即為,故所成角的正弦值為,選A.【題目點撥】求解本題的關(guān)鍵是作出異面直線所成的角,求異面直線所成角的步驟是:平移定角、連線成形、解形求角、得鈍求補(bǔ).二、填空題:本大題共6小題,每小題5分,共30分。11、0.4【解題分析】
根據(jù)幾何概型的計算,反求陰影部分的面積即可.【題目詳解】設(shè)陰影部分的面積為,根據(jù)幾何概型的概率計算公式:,解得.故答案為:.【題目點撥】本題考查幾何概型的概率計算公式,屬基礎(chǔ)題.12、【解題分析】
利用函數(shù)的單調(diào)性,結(jié)合函數(shù)的定義域求解即可.【題目詳解】因為函數(shù)的定義域是,,函數(shù)是增函數(shù),所以函數(shù)的最小值為:,最大值為:.所以函數(shù)的值域為:,.故答案為,.【題目點撥】本題考查函數(shù)的單調(diào)性以及函數(shù)的值域的求法,考查計算能力.13、1【解題分析】
在方向上的投影為,把向量坐標(biāo)代入公式,構(gòu)造出關(guān)于的方程,求得.【題目詳解】因為,所以,解得:,故填:.【題目點撥】本題考查向量的數(shù)量積定義中投影的概念、及向量數(shù)量積的坐標(biāo)運(yùn)算,考查基本運(yùn)算能力.14、20【解題分析】
先由條件求出,算出,然后利用二次函數(shù)的知識求出即可【題目詳解】設(shè)的公差為,由題意得即,①即,②由①②聯(lián)立得所以故當(dāng)時,取得最大值400故答案為:20【題目點撥】等差數(shù)列的是關(guān)于的二次函數(shù),但要注意只能取正整數(shù).15、【解題分析】
設(shè),則,可得,然后利用基本不等式得到關(guān)于的一元二次方程解方程可得的最大值和最小值,進(jìn)而得到結(jié)論.【題目詳解】∵x,y=R+,設(shè),則,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值與最小值分別為M和m,∴M,m,∴M+m.【題目點撥】本題考查了基本不等式的應(yīng)用和一元二次不等式的解法,考查了轉(zhuǎn)化思想和運(yùn)算推理能力,屬于中檔題.16、【解題分析】
根據(jù)題意得,解得,求得圓錐的高,利用體積公式,即可求解.【題目詳解】設(shè)圓錐底面的半徑為,根據(jù)題意得,解得,所以圓錐的高,所以圓錐的體積.【題目點撥】本題主要考查了圓錐的體積的計算,以及圓錐的側(cè)面展開圖的應(yīng)用,其中解答中根據(jù)圓錐的側(cè)面展開圖,求得圓錐的底面圓的半徑是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)存在,,【解題分析】
(1)先設(shè)與直線l垂直的直線方程為,再結(jié)合點到直線的距離公式求解即可;(2)先設(shè)存在,利用都有為常數(shù)及在圓上,列出等式,然后利用恒成立求解即可.【題目詳解】解:(1)由直線.則可設(shè)與直線l垂直的直線方程為,又該直線與圓相切,則,則,故所求直線方程為或;(2)假設(shè)存在定點使得對于圓C上任一點P,為常數(shù),則,所以,將代入上式化簡整理得:對恒成立,所以,解得或,又,即,所以存在定點使得對于圓C上任一點P,為常數(shù).【題目點撥】本題考查了點到直線的距離公式,重點考查了點與圓的位置關(guān)系,屬中檔題.18、(1)見解析;(2)最小值-2.【解題分析】
試題分析:(1)∵M(jìn)是BC的中點,∴=(+).代入=-2,得=--,即++=0(2)若P為中線AM上的一個動點,若AM=2,我們易將·(+),轉(zhuǎn)化為-2||||=2(x-1)2-2的形式,然后根據(jù)二次函數(shù)在定區(qū)間上的最值的求法,得到答案.試題解析:(1)證明:∵M(jìn)是BC的中點,∴=(+)代入=-2,得=--,即++=0(2)設(shè)||=x,則||=2-x(0≤x≤2)∵M(jìn)是BC的中點,∴+=2∴·(+)=2·=-2||||=-2x(2-x)=2(x2-2x)=2(x-1)2-2,當(dāng)x=1時,取最小值-2考點:平面向量數(shù)量積的運(yùn)算.【題目詳解】請在此輸入詳解!19、(1)(2)【解題分析】
(1)利用二倍角公式以及輔助角公式化簡即可.(2)利用配湊把打開即可.【題目詳解】解:(1)原式(2),,又,,,,【題目點撥】本題主要考查了二倍角公式,兩角和與差的正切的應(yīng)用.輔助角公式.20、(1);(2)【解題分析】
(1)由利用任意角的三角函數(shù)的定義,列等式可求得實數(shù)的值;(2)由(1)可得,利用誘導(dǎo)公式可得原式=,根據(jù)同角三角函數(shù)的關(guān)系,可得結(jié)果.【題目詳解】(1)由三角函數(shù)的定義可知(2)由(1)知可得原式====【題目點撥】本題主要考查誘導(dǎo)公式的應(yīng)用以及三角函數(shù)的定義,屬于簡單題.對誘導(dǎo)公式的記憶不但要正確理解“奇變偶不變,符號看象限”的含義,同時還要加強(qiáng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 古鎮(zhèn)改造磚運(yùn)輸協(xié)議模板
- 服裝服飾運(yùn)輸合同
- 農(nóng)業(yè)抗旱物資運(yùn)輸合同
- 學(xué)校建筑石材配送協(xié)議
- 產(chǎn)業(yè)基地自動扶梯裝修合同
- 文旅融合發(fā)展項目居間協(xié)議
- 丹陽六年級下數(shù)學(xué)試卷
- 橋梁液壓爬模專項施工方案
- 鐵路接觸網(wǎng)拆除施工方案
- 北海中學(xué)期末數(shù)學(xué)試卷
- 北京市豐臺區(qū)2024-2025學(xué)年九年級上學(xué)期期末語文試題(含答案)
- 二零二五年度能源行業(yè)員工勞動合同標(biāo)準(zhǔn)范本3篇
- 計劃供貨時間方案
- 2024年石柱土家族自治縣中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 西藏事業(yè)單位c類歷年真題
- 2024人教新目標(biāo)(Go for it)八年級英語下冊【第1-10單元】全冊 知識點總結(jié)
- 2025中國移動安徽分公司春季社會招聘高頻重點提升(共500題)附帶答案詳解
- 七年級英語下學(xué)期開學(xué)考試(深圳專用)-2022-2023學(xué)年七年級英語下冊單元重難點易錯題精練(牛津深圳版)
- 杭州市房地產(chǎn)經(jīng)紀(jì)服務(wù)合同
- 放射科護(hù)理常規(guī)
- 新時代中小學(xué)教師職業(yè)行為十項準(zhǔn)則
評論
0/150
提交評論