版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省南通市栟茶高級中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角所對的邊分別為,若,則此三角形()A.無解 B.有一解 C.有兩解 D.解的個數(shù)不確定2.設(shè)為中的三邊長,且,則的取值范圍是()A. B.C. D.3.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件4.在下列結(jié)論中,正確的為()A.兩個有共同起點的單位向量,其終點必相同B.向量與向量的長度相等C.向量就是有向線段D.零向量是沒有方向的5.有5支彩筆(除顏色外無差別),顏色分別為紅、黃、藍(lán)、綠、紫.從這5支彩筆中任取2支不同顏色的彩筆,則取出的2支彩筆中含有紅色彩筆的概率為A. B. C. D.6.設(shè),則()A. B. C. D.7.已知等差數(shù)列的前項和為,,,則使取得最大值時的值為()A.5 B.6 C.7 D.88.執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.9.在數(shù)列中,若,,,設(shè)數(shù)列滿足,則的前項和為()A. B. C. D.10.若實數(shù)a、b滿足條件,則下列不等式一定成立的是A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知則sin2x的值為________.12.從分別寫有1,2,3,4,5的五張卡片中,任取兩張,這兩張卡片上的數(shù)字之差的絕對值等于1的概率為________.13.已知直線和,若,則a等于________.14.從甲、乙、丙、丁四個學(xué)生中任選兩人到一個單位實習(xí),余下的兩人到另一單位實習(xí),則甲、乙兩人不在同一單位實習(xí)的概率為________.15.若實數(shù)滿足不等式組則的最小值是_____.16.已知等比數(shù)列的公比為2,前n項和為,則=______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)甲、乙、丙三個乒乓球協(xié)會分別選派3,1,2名運動員參加某次比賽,甲協(xié)會運動員編號分別為,,,乙協(xié)會編號為,丙協(xié)會編號分別為,,若從這6名運動員中隨機抽取2名參加雙打比賽.(1)用所給編號列出所有可能抽取的結(jié)果;(2)求丙協(xié)會至少有一名運動員參加雙打比賽的概率;(3)求參加雙打比賽的兩名運動員來自同一協(xié)會的概率.18.在等差數(shù)列中,(Ⅰ)求通項;(Ⅱ)求此數(shù)列前30項的絕對值的和.19.某同學(xué)假期社會實踐活動選定的課題是“節(jié)約用水研究”.為此他購買了電子節(jié)水閥,并記錄了家庭未使用電子節(jié)水閥20天的日用水量數(shù)據(jù)(單位:)和使用了電子節(jié)水閥20天的日用水量數(shù)據(jù),并利用所學(xué)的《統(tǒng)計學(xué)》知識得到了未使用電子節(jié)水閥20天的日平均用水量為0.48,使用了電子節(jié)水閥20天的日用水量數(shù)據(jù)的頻率分布直方圖如下圖:(1)試估計該家庭使用電子節(jié)水閥后,日用水量小于0.35的概率;(2)估計該家庭使用電子節(jié)水閥后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表.)20.在如圖所示的幾何體中,D是AC的中點,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求證:AC⊥FB;(Ⅱ)已知G,H分別是EC和FB的中點.求證:GH∥平面ABC.21.如圖,在四棱錐中,平面,底面為菱形.(1)求證:平面;(2)若為的中點,,求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
利用正弦定理求,與比較的大小,判斷B能否取相應(yīng)的銳角或鈍角.【題目詳解】由及正弦定理,得,,B可取銳角;當(dāng)B為鈍角時,,由正弦函數(shù)在遞減,,可取.故選C.【題目點撥】本題考查正弦定理,解三角形中何時無解、一解、兩解的條件判斷,屬于中檔題.2、B【解題分析】
由,則,再根據(jù)三角形邊長可以證得,再利用不等式和已知可得,進(jìn)而得到,再利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,求得函數(shù)的最小值,即可求解.【題目詳解】由題意,記,又由,則,又為△ABC的三邊長,所以,所以,另一方面,由于,所以,又,所以,不妨設(shè),且為的三邊長,所以.令,則,當(dāng)時,可得,從而,當(dāng)且僅當(dāng)時取等號.故選B.【題目點撥】本題主要考查了解三角形,綜合了函數(shù)和不等式的綜合應(yīng)用,以及基本不等式和導(dǎo)數(shù)的應(yīng)用,屬于綜合性較強的題,難度較大,著重考查了分析問題和解答問題的能力,屬于難題.3、A【解題分析】
根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【題目詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【題目點撥】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題4、B【解題分析】
逐一分析選項,得到答案.【題目詳解】A.單位向量的方向任意,所以當(dāng)起點相同時,終點在以起點為圓心的單位圓上,終點不一定相同,所以選項不正確;B.向量與向量是相反向量,方向相反,長度相等,所以選項正確;C.向量是既有大小,又有方向的向量,可以用有向線段表示,但不能說向量就是有向線段,所以選項不正確;D.規(guī)定零向量的方向任意,而不是沒有方向,所以選項不正確.故選B.【題目點撥】本題考查了向量的基本概念,屬于基礎(chǔ)題型.5、C【解題分析】選取兩支彩筆的方法有種,含有紅色彩筆的選法為種,由古典概型公式,滿足題意的概率值為.本題選擇C選項.考點:古典概型名師點睛:對于古典概型問題主要把握基本事件的種數(shù)和符合要求的事件種數(shù),基本事件的種數(shù)要注意區(qū)別是排列問題還是組合問題,看抽取時是有、無順序,本題從這5支彩筆中任取2支不同顏色的彩筆,是組合問題,當(dāng)然簡單問題建議采取列舉法更直觀一些.6、C【解題分析】
首先化簡,可得到大小關(guān)系,再根據(jù),即可得到的大小關(guān)系.【題目詳解】,,.所以.故選:C【題目點撥】本題主要考查指數(shù),對數(shù)的比較大小,熟練掌握指數(shù)和對數(shù)函數(shù)的性質(zhì)為解題的關(guān)鍵,屬于簡單題.7、D【解題分析】
由題意求得數(shù)列的通項公式為,令,解得,即可得到答案.【題目詳解】由題意,根據(jù)等差數(shù)列的性質(zhì),可得,即又由,即,所以等差數(shù)列的公差為,又由,解得,所以數(shù)列的通項公式為,令,解得,所以使得取得最大值時的值為8,故選D.【題目點撥】本題主要考查了等差數(shù)列的性質(zhì),等差數(shù)列的通項公式,以及前n項和最值問題,其中解答中熟記等差數(shù)列的性質(zhì)和通項公式,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、C【解題分析】
根據(jù)程序框圖列出算法循環(huán)的每一步,結(jié)合判斷條件得出輸出的的值.【題目詳解】執(zhí)行如圖所示的程序框圖如下:不成立,,;不成立,,;不成立,,;不成立,,.成立,跳出循環(huán)體,輸出的值為,故選C.【題目點撥】本題考查利用程序框圖計算輸出結(jié)果,對于這類問題,通常利用框圖列出算法的每一步,考查計算能力,屬于中等題.9、D【解題分析】
利用等差中項法得知數(shù)列為等差數(shù)列,根據(jù)已知條件可求出等差數(shù)列的首項與公差,由此可得出數(shù)列的通項公式,利用對數(shù)與指數(shù)的互化可得出數(shù)列的通項公式,并得知數(shù)列為等比數(shù)列,利用等比數(shù)列前項和公式可求出.【題目詳解】由可得,可知是首項為,公差為的等差數(shù)列,所以,即.由,可得,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,因此,數(shù)列的前項和為,故選D.【題目點撥】本題考查利用等差中項法判斷等差數(shù)列,同時也考查了對數(shù)與指數(shù)的互化以及等比數(shù)列的求和公式,解題的關(guān)鍵在于結(jié)合已知條件確定數(shù)列的類型,并求出數(shù)列的通項公式,考查運算求解能力,屬于中等題.10、D【解題分析】
根據(jù)題意,由不等式的性質(zhì)依次分析選項,綜合即可得答案.【題目詳解】根據(jù)題意,依次分析選項:對于A、,時,有成立,故A錯誤;對于B、,時,有成立,故B錯誤;對于C、,時,有成立,故C錯誤;對于D、由不等式的性質(zhì)分析可得若,必有成立,則D正確;故選:D.【題目點撥】本題考查不等式的性質(zhì),對于錯誤的結(jié)論舉出反例即可.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
利用二倍角的余弦函數(shù)公式求出的值,再利用誘導(dǎo)公式化簡,將的值代入計算即可求出值.【題目詳解】解:∵,,則sin2x==,故答案為.【題目點撥】此題考查了二倍角的余弦函數(shù)公式,以及誘導(dǎo)公式的作用,熟練掌握公式是解本題的關(guān)鍵.12、【解題分析】
基本事件總數(shù)n,利用列舉法求出這兩張卡片上的數(shù)字之差的絕對值等于1包含的基本事件有4種情況,由此能求出這兩張卡片上的數(shù)字之差的絕對值等于1的概率.【題目詳解】從分別寫有1,2,3,4,5的五張卡片中,任取兩張,基本事件總數(shù)n,這兩張卡片上的數(shù)字之差的絕對值等于1包含的基本事件有:(1,2),(2,3),(3,4),(4,5),共4種情況,∴這兩張卡片上的數(shù)字之差的絕對值等于1的概率為p.故答案為.【題目點撥】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.13、【解題分析】
根據(jù)兩直線互相垂直的性質(zhì)可得,從而可求出的值.【題目詳解】直線和垂直,.解得.故答案為:【題目點撥】本題考查了直線的一般式,根據(jù)兩直線的位置關(guān)系求參數(shù)的值,熟記兩直線垂直系數(shù)滿足:是關(guān)鍵,屬于基礎(chǔ)題.14、.【解題分析】
求得從甲、乙、丙、丁四個學(xué)生中任選兩人的總數(shù)和甲、乙兩人不在同一單位實習(xí)的方法數(shù),由古典概型的概率計算公式可得所求值.【題目詳解】解:從甲、乙、丙、丁四個學(xué)生中任選兩人的方法數(shù)為種,甲、乙兩人不在同一單位實習(xí)的方法數(shù)為種,則甲、乙兩人不在同一單位實習(xí)的概率為.故答案為:.【題目點撥】本題主要考查古典概型的概率計算公式,考查運算能力,屬于基礎(chǔ)題.15、4【解題分析】試題分析:由于根據(jù)題意x,y滿足的關(guān)系式,作出可行域,當(dāng)目標(biāo)函數(shù)z=2x+3y在邊界點(2,0)處取到最小值z=2×2+3×0=4,故答案為4.考點:本試題主要考查了線性規(guī)劃的最優(yōu)解的運用.點評:解決該試題的關(guān)鍵是解決線性規(guī)劃的小題時,常用“角點法”,其步驟為:①由約束條件畫出可行域?②求出可行域各個角點的坐標(biāo)?③將坐標(biāo)逐一代入目標(biāo)函數(shù)?④驗證,求出最優(yōu)解.16、【解題分析】由等比數(shù)列的定義,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)15種;(2);(3)【解題分析】
(1)從這6名運動員中隨機抽取2名參加雙打比賽,利用列舉法即可得到所有可能的結(jié)果.(2利用列舉法得到“丙協(xié)會至少有一名運動員參加雙打比賽”的基本事件的個數(shù),利用古典概型,即可求解;(3)由兩名運動員來自同一協(xié)會有,,,,共4種,利用古典概型,即可求解.【題目詳解】(1)由題意,從這6名運動員中隨機抽取2名參加雙打比賽,所有可能的結(jié)果為,,,,,,,,,,,,,,,共15種.(2)因為丙協(xié)會至少有一名運動員參加雙打比賽,所以編號為,的兩名運動員至少有一人被抽到,其結(jié)果為:設(shè)“丙協(xié)會至少有一名運動員參加雙打比賽”為事件,,,,,,,,,,共9種,所以丙協(xié)會至少有一名運動員參加雙打比賽的概率.(3)兩名運動員來自同一協(xié)會有,,,,共4種,參加雙打比賽的兩名運動員來自同一協(xié)會的概率為.【題目點撥】本題主要考查了古典概型及其概率的計算問題,其中解答中準(zhǔn)確利用列舉法的基本事件的總數(shù),找出所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.18、(Ⅰ);(Ⅱ)765【解題分析】試題分析:(Ⅰ)由題意可得:進(jìn)而得到數(shù)列通項公式為;(Ⅱ)由(Ⅰ)可得當(dāng)時,,所以采用分組求和即可試題解析:(Ⅰ)∵即.∴.∴.(Ⅱ)由,則.∴=.考點:1.求數(shù)列通項公式;2.?dāng)?shù)列求和19、(1)0.48(2)()【解題分析】
(1)計算日用水量小于0.35時,頻率分布直方圖中長方形面積之和即可;(2)根據(jù)頻率分布直方圖計算出使用電子節(jié)水閥后日均節(jié)水量的平均值,再求出年節(jié)水量即可.【題目詳解】(1)根據(jù)直方圖,該家庭使用電子節(jié)水閥后20天日用水量小于0.35的頻率為,因此該家庭使用電子節(jié)水閥后日用水量小于0.35的概率的估計值為0.48.(2)該家庭使用了電子節(jié)水閥后20天日用水量的平均數(shù)為.估計使用電子節(jié)水閥后,一年可節(jié)省水().【題目點撥】本題考查對頻率分布直方圖的理解,以及由頻率分布直方圖計算平均數(shù),屬基礎(chǔ)題.20、(Ⅰ)證明:見解析;(Ⅱ)見解析.【解題分析】試題分析:(Ⅰ)根據(jù),知與確定一個平面,連接,得到,,從而平面,證得.(Ⅱ)設(shè)的中點為,連,在,中,由三角形中位線定理可得線線平行,證得平面平面,進(jìn)一步得到平面.試題解析:(Ⅰ)證明:因,所以與確定平面.連接,因為為的中點,所以,同理可得.又,所以平面,因為平面,所以.(Ⅱ)設(shè)的中點為,連.在中,因為是的中點,所以,又,所以.在中,因為是的中點,所以,又,所以平面平面,因為平面,所以平面.【考點】平行關(guān)系,垂直關(guān)系【名師點睛】本題主要考查直線與直線垂直、直線與平面平行.此類題目是立體幾何中的基本問題.解答本題,關(guān)鍵在于能利用已知的直線與直線、直線與平面、平面與平面的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 26342-2024國際間遺體轉(zhuǎn)運棺柩
- 高考地理一輪復(fù)習(xí)第四章地球上的水及其運動第四節(jié)海-氣相互作用課件
- 吉林省德惠市第七中學(xué)七年級地理上冊 第一章 地球和地圖綜合教案 (新版)新人教版
- 二年級品德與生活上冊 3.3 做個快樂鳥3教學(xué)設(shè)計 新人教版
- 2024-2025學(xué)年高中政治上學(xué)期第4周《文化的繼承性與文化發(fā)展》教學(xué)設(shè)計
- 元稹-《菊花》課件
- 裝修甲醛合同(2篇)
- 2020-2024年上海市春考語文真題試卷匯編含答案
- 西南林業(yè)大學(xué)《地理學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 裝在套子里的人 (公開課獲獎?wù)n件)
- YDT 4470-2023電信網(wǎng)絡(luò)的確定性IP網(wǎng)絡(luò) 控制面技術(shù)要求
- 基于創(chuàng)客教育理念的幼兒機器人課程的開發(fā)與實踐研究
- 化糞池清理及管道疏通承包合同
- 中國員工派遣國外勞務(wù)合同
- 工廠冷庫儲存應(yīng)急預(yù)案方案及流程
- 2024年湖北省十堰市荊楚初中聯(lián)盟八年級中考模擬預(yù)測生物試題
- 合胞體病毒感染的呼吸道上皮屏障破壞
- 資源教室檢查方案
- 2024年春上海開放大學(xué)《危機公共關(guān)系》計分作業(yè)1-3
- 中醫(yī)優(yōu)勢病種診療方案優(yōu)化建議
- 第9課 發(fā)展社會主義民主政治(課件)-【中職專用】高一思想政治《中國特色社會主義》(高教版2023·基礎(chǔ)模塊)
評論
0/150
提交評論