2024屆浙江省臺州市臺州中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第1頁
2024屆浙江省臺州市臺州中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第2頁
2024屆浙江省臺州市臺州中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第3頁
2024屆浙江省臺州市臺州中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第4頁
2024屆浙江省臺州市臺州中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省臺州市臺州中學數(shù)學高一下期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的圖象的一個對稱中心是()A. B. C. D.2.己知x與y之間的幾組數(shù)據(jù)如下表:x0134y1469則y與x的線性回歸直線y=A.(2,5) B.(5,9) C.(0,1) D.(1,4)3.邊長為1的正方形上有一動點,則向量的范圍是()A. B. C. D.4.在等比數(shù)列{an}中,若a2,a9是方程x2﹣2x﹣6=0的兩根,則a4?a7的值為()A.6 B.1 C.﹣1 D.﹣65.在中,角,,所對的邊分別為,,,且邊上的高為,則的最大值是()A.8 B.6 C. D.46.以為圓心,且與兩條直線,都相切的圓的標準方程為()A. B.C. D.7.已知等差數(shù)列中,,.若公差為某一自然數(shù),則n的所有可能取值為()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,708.若函數(shù)的圖象上所有的點向右平移個單位長度后得到的函數(shù)圖象關于對稱,則的值為A. B. C. D.9.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2B.若,則a>bC.若a3>b3且ab<0,則D.若a2>b2且ab>0,則10.已知,且,則()A. B.7 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖是一正方體的表面展開圖.、、都是所在棱的中點.則在原正方體中:①與異面;②平面;③平面平面;④與平面形成的線面角的正弦值是;⑤二面角的余弦值為.其中真命題的序號是______.12.在中,若,,,則________.13.過拋物線的焦點F的直線交拋物線于A、B兩點,則________.14.某校女子籃球隊7名運動員身高(單位:cm)分布的莖葉圖如圖,已知記錄的平均身高為175cm,但記錄中有一名運動員身高的末位數(shù)字不清晰,如果把其末位數(shù)字記為x,那么x的值為________.15.不等式的解為_______.16.將正整數(shù)按下圖方式排列,2019出現(xiàn)在第行第列,則______;12345678910111213141516………三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關系進行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進行檢驗.日期第1天第2天第3天第4天第5天溫度(℃)101113128發(fā)芽數(shù)(顆)2326322616(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;(2)若選取的是第2、3、4天的數(shù)據(jù),求關于的線性回歸方程;(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)18.用紅、黃、藍三種不同顏色給圖中3個矩形隨機涂色,每個矩形只涂一種顏色,求3個矩形顏色都不同的概率.19.已知向量=(sinx,cosx),=(cosx,cosx),=(2,1).(1)若∥,求sinxcosx的值;(2)若0<x≤,求函數(shù)f(x)=·的值域.20.在平面直角坐標系中,為坐標原點,三點滿足.(1)求證:三點共線;(2)已知的最小值為,求實數(shù)的值.21.如圖所示,已知的斜邊長,現(xiàn)以斜邊橫在直線為軸旋轉一周,得到旋轉體.(1)當時,求此旋轉體的體積;(2)比較當,時,兩個旋轉體表面積的大?。?/p>

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

先求出變換后的函數(shù)的解析式,求出所得函數(shù)的對稱中心坐標,可得出正確選項.【題目詳解】函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的解析式為,令,得,因此,所得函數(shù)的圖象的一個對稱中心是,故選B.【題目點撥】本題考查圖象的變換以及三角函數(shù)的對稱中心,解題的關鍵就是求出變換后的三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.2、A【解題分析】

分別求出x,y均值即得.【題目詳解】x=0+1+3+44=2,故選A.【題目點撥】本題考查線性回歸直線方程,線性回歸直線一定過點(x3、A【解題分析】

分類,按在正方形的四條邊上分別求解.【題目詳解】如圖,分別以為建立平面直角坐標系,,設,,∴,當在邊或上時,,所以,當在邊上時,,,當在邊上時,,,∴的取值范圍是.故選:A.【題目點撥】本題考查平面向量的數(shù)量積,通過建立坐標系,把向量和數(shù)量積用坐標表示,使問題簡單化.4、D【解題分析】

由題意利用韋達定理,等比數(shù)列的性質(zhì),求得a4?a7的值.【題目詳解】∵等比數(shù)列{an}中,若a2,a9是方程x2﹣2x﹣6=0的兩根,∴a2?a9=﹣6,則a4?a7=a2?a9=﹣6,故選:D.【題目點撥】本題主要考查等比數(shù)列的性質(zhì)及二次方程中韋達定理的應用,考查了分析問題的能力,屬于基礎題.5、D【解題分析】,這個形式很容易聯(lián)想到余弦定理:cosA,①而條件中的“高”容易聯(lián)想到面積,bcsinA,即a2=2bcsinA,②將②代入①得:b2+c2=2bc(cosA+sinA),∴=2(cosA+sinA)=4sin(A+),當A=時取得最大值4,故選D.點睛:三角形中最值問題,一般轉化為條件最值問題:先根據(jù)正、余弦定理及三角形面積公式結合已知條件靈活轉化邊和角之間的關系,利用基本不等式或函數(shù)方法求最值.在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應用,否則會出現(xiàn)錯誤.6、C【解題分析】

由題意有,再求解即可.【題目詳解】解:設圓的半徑為,則,則,即圓的標準方程為,故選:C.【題目點撥】本題考查了點到直線的距離公式,重點考查了運算能力,屬基礎題.7、B【解題分析】試題分析:由等差數(shù)列的通項公式得,公差,所以,可能為,的所有可能取值為選.考點:1.等差數(shù)列及其通項公式;2.數(shù)的整除性.8、C【解題分析】

先由題意求出平移后的函數(shù)解析式,再由對稱中心,即可求出結果.【題目詳解】函數(shù)的圖象上所有的點向右平移個單位長度后,可得函數(shù)的圖像,又函數(shù)的圖象關于對稱,,,故,又,時,.故選C.【題目點撥】本題主要考查由平移后的函數(shù)性質(zhì)求參數(shù)的問題,熟記正弦函數(shù)的對稱性,以及函數(shù)的平移原則即可,屬于??碱}型.9、C【解題分析】

根據(jù)不等式的性質(zhì),對A、B、C、D四個選項通過舉反例進行一一驗證.【題目詳解】A.若a>b,則ac2>bc2(錯),若c=0,則A不成立;B.若,則a>b(錯),若c<0,則B不成立;C.若a3>b3且ab<0,則(對),若a3>b3且ab<0,則D.若a2>b2且ab>0,則(錯),若,則D不成立.故選:C.【題目點撥】此題主要考查不等關系與不等式的性質(zhì)及其應用,例如舉反例法求解比較簡單.兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關系.10、D【解題分析】

由平方關系求得,再由商數(shù)關系求得,最后由兩角和的正切公式可計算.【題目詳解】,,,,.故選:D.【題目點撥】本題考查兩角和的正切公式,考查同角間的三角函數(shù)關系.屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、①②④【解題分析】

將正方體的表面展開圖還原成正方體,利用正方體中線線、線面以及面面關系,以及直線與平面所成角的定義和二面角的定義進行判斷.【題目詳解】根據(jù)條件將正方體進行還原如下圖所示:對于命題①,由圖形可知,直線與異面,命題①正確;對于命題②,、分別為所在棱的中點,易證四邊形為平行四邊形,所以,,平面,平面,平面,命題②正確;對于命題③,在正方體中,平面,由于四邊形為平行四邊形,,平面.、平面,,.則二面角所成的角為,顯然不是直角,則平面與平面不垂直,命題③錯誤;對于命題④,設正方體的棱長為,易知平面,則與平面所成的角為,由勾股定理可得,,在中,,即直線與平面所成線面角的正弦值為,命題④正確;對于命題⑤,在正方體中,平面,且,平面.、平面,,,所以,二面角的平面角為,在中,由勾股定理得,,由余弦定理得,命題⑤錯誤.故答案為①②④.【題目點撥】本題考查命題真假的判斷,考查空間中線線、線面、面面關系的判斷以及線面角、二面角的計算,判斷時要從空間中有關線線、線面、面面關系的平行或垂直的判定或性質(zhì)定理出發(fā)進行推導,在計算空間角時,則應利用空間角的定義來求解,考查推理能力與運算求解能力,屬于中等題.12、2;【解題分析】

利用余弦定理可構造關于的方程,解方程求得結果.【題目詳解】由余弦定理得:解得:或(舍)本題正確結果:【題目點撥】本題考查利用余弦定理解三角形,屬于基礎題.13、【解題分析】

討論斜率不存在和斜率存在兩種情況,分別計算得到答案.【題目詳解】拋物線的焦點F為,當斜率不存在時,易知,故;當斜率存在時,設,故,即,故,.綜上所述:.故答案為:.【題目點撥】本題考查了拋物線中線段長度問題,意在考查學生的計算能力和轉化能力.14、2【解題分析】

根據(jù)莖葉圖的數(shù)據(jù)和平均數(shù)的計算公式,列出方程,即可求解,得到答案.【題目詳解】由題意,可得,即,解得.【題目點撥】本題主要考查了莖葉圖的認識和平均數(shù)的公式的應用,其中解答中根據(jù)莖葉圖,準確的讀取數(shù)據(jù),再根據(jù)數(shù)據(jù)的平均數(shù)的計算公式,列出方程求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、【解題分析】

把不等式轉化為,即可求解.【題目詳解】由題意,不等式,等價于,解得.即不等式的解為故答案為:.【題目點撥】本題主要考查了分式不等式的求解,其中解答中熟記分式不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、128【解題分析】

觀察數(shù)陣可知:前行一共有個數(shù),且第行的最后一個數(shù)為,且第行有個數(shù),由此可推斷出所在的位置.【題目詳解】因為前行一共有個數(shù),且第行的最后一個數(shù)為,又因為,所以在第行,且第45行最后數(shù)為,又因為第行有個數(shù),,所以在第列,所以.故答案為:.【題目點撥】本題考查數(shù)列在數(shù)陣中的應用,著重考查推理能力,難度一般.分析數(shù)列在數(shù)陣中的應用問題,可從以下點分析問題:觀察每一行數(shù)據(jù)個數(shù)與行號關系,同時注意每一行開始的數(shù)據(jù)或結尾數(shù)據(jù),所有行數(shù)據(jù)的總個數(shù),注意等差數(shù)列的求和公式的運用.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)線性回歸方程是可靠的.【解題分析】

(1)用列舉法求出基本事件數(shù),計算所求的概率值;(2)由已知數(shù)據(jù)求得與,則線性回歸方程可求;(3)利用回歸方程計算與8時的值,再由已知數(shù)據(jù)作差取絕對值,與1比較大小得結論.【題目詳解】解:(1)設“余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)為事件”,從5組數(shù)據(jù)中選取3組數(shù)據(jù),余下的2組數(shù)據(jù)共10種情況:,,,,,,,,,.其中事件的有6種,;(2)由數(shù)據(jù)求得,,且,.代入公式得:,.線性回歸方程為:;(3)當時,,,當時,,.故得到的線性回歸方程是可靠的.【題目點撥】本題考查了線性回歸方程的求法與應用問題,考查古典概型的概率計算問題,屬于中檔題.18、【解題分析】試題分析:可畫出樹枝圖,得到基本事件的總數(shù),再利用古典概型及其概率的計算公式,即可求解事件的概率.試題解析:所有可能的基本事件共有27個,如圖所示.記“3個矩形顏色都不同”為事件A,由圖,可知事件A的基本事件有2×3=6(個),故P(A)==.19、(1);(2)【解題分析】

(1)由向量共線得tanx=2,再由同角三角函數(shù)基本關系得sinxcosx=,即可求解;(2)整理f(x)=·=sin(2x+)+,由三角函數(shù)性質(zhì)即可求解最值【題目詳解】(1)∵∥,∴sinx=2cosx,tanx=2.∴sinxcosx===(2)f(x)=·=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+∵0<x≤,∴<2x+≤.∴sin(2x+)≤1∴1≤f(x)≤.所以f(x)的值域為:【題目點撥】本題考查三角函數(shù)恒等變換,同角三角函數(shù)基本關系式,三角函數(shù)性質(zhì),熟記公式,準確計算是關鍵,是中檔題20、(1)證明過程見解析;(2)【解題分析】試題分析:(1)只需證得即可。(2)由題意可求得的解析式,利用換元法轉換成,討論的單調(diào)性,可知其在上為單調(diào)減函數(shù),得可解得的值。(1)證明:三點共線.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論