版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省嘉峪關(guān)市2024屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓,過點作圓的最長弦和最短弦,則直線,的斜率之和為A. B. C.1 D.2.已知變量x與y負相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù)=1.5,=5,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是()A. B.C. D.3.的值等于()A. B. C. D.4.下列結(jié)論中錯誤的是()A.若,則 B.函數(shù)的最小值為2C.函數(shù)的最小值為2 D.若,則函數(shù)5.在復(fù)平面內(nèi),復(fù)數(shù)滿足,則的共軛復(fù)數(shù)對應(yīng)的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限6.德國數(shù)學(xué)家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到1.對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第6項為1(注:1可以多次出現(xiàn)),則的所有不同值的個數(shù)為()A.3 B.4 C.5 D.327.如圖是函數(shù)一個周期的圖象,則的值等于A. B. C. D.8.如圖,在正方體中,,分別是中點,則異面直線與所成角大小為().A. B. C. D.9.已知等差數(shù)列中,若,則取最小值時的()A.9 B.8 C.7 D.610.已知向量,滿足,,,則()A.3 B.2 C.1 D.0二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線:與圓交于,兩點,過,分別作的垂線與軸交于,兩點,若,則__________.12.在數(shù)列中,,當時,.則數(shù)列的前項和是_____.13.函數(shù)在的值域是______________.14.已知,則____________________________.15.在數(shù)列中,,則___________.16.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,,b=1,則_____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知平面平行于三棱錐的底面,等邊所在的平面與底面垂直,且,設(shè)(1)求證:且;(2)求二面角的余弦值.18.如圖,矩形所在平面與以為直徑的圓所在平面垂直,為中點,是圓周上一點,且,,.(1)求異面直線與所成角的余弦值;(2)設(shè)點是線段上的點,且滿足,若直線平面,求實數(shù)的值.19.已知函數(shù)(1)求函數(shù)的最小正周期;(2)若,且,求的值.20.某產(chǎn)品具有一定的時效性,在這個時效期內(nèi),由市場調(diào)查可知,在不做廣告宣傳且每件獲利a元的前提下,可賣出b件;若做廣告宣傳,廣告費為n千元比廣告費為千元時多賣出件。(1)試寫出銷售量與n的函數(shù)關(guān)系式;(2)當時,廠家應(yīng)該生產(chǎn)多少件產(chǎn)品,做幾千元的廣告,才能獲利最大?21.已知(Ⅰ)求的值;(Ⅱ)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
根據(jù)圓的幾何性質(zhì)可得最長弦是直徑,最短弦和直徑垂直,故可計算斜率,并求和.【題目詳解】由題意得,直線經(jīng)過點和圓的圓心弦長最長,則直線的斜率為,由題意可得直線與直線互相垂直時弦長最短,則直線的斜率為,故直線,的斜率之和為.【題目點撥】本題考查了兩直線垂直的斜率關(guān)系,以及圓內(nèi)部的幾何性質(zhì),屬于簡單題型.2、A【解題分析】
先由變量負相關(guān),可排除D;再由回歸直線過樣本中心,即可得出結(jié)果.【題目詳解】因為變量x與y負相關(guān),所以排除D;又回歸直線過樣本中心,A選項,過點,所以A正確;B選項,不過點,所以B不正確;C選項,不過點,所以C不正確;故選A【題目點撥】本題主要考查線性回歸直線,熟記回歸直線的意義即可,屬于??碱}型.3、D【解題分析】
利用誘導(dǎo)公式先化簡,再利用差角的余弦公式化簡得解.【題目詳解】由題得原式=.故選D【題目點撥】本題主要考查誘導(dǎo)公式和差角的余弦公式化簡求值,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.4、B【解題分析】
根據(jù)均值不等式成立的條件逐項分析即可.【題目詳解】對于A,由知,,所以,故選項A本身正確;對于B,,但由于在時不可能成立,所以不等式中的“”實際上取不到,故選項B本身錯誤;對于C,因為,當且僅當,即時,等號成立,故選項C本身正確;對于D,由知,,所以lnx+=-2,故選項D本身正確.故選B.【題目點撥】本題主要考查了均值不等式及不等式取等號的條件,屬于中檔題.5、A【解題分析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由共軛復(fù)數(shù)的概念得答案.【題目詳解】由z(1﹣i)=2,得z=,∴.則z的共軛復(fù)數(shù)對應(yīng)的點的坐標為(1,﹣1),位于第四象限.故選D.【題目點撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.6、A【解題分析】
由題意:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),我們可以從第六項為1出發(fā),逐項求出各項的取值,可得的所有不同值的個數(shù).【題目詳解】解:由題意:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第6項為1,則變換中的第5項一定是2,變換中的第4項一定是4,變換中的第3項可能是1,也可能是8,變換中的第2項可能是2,也可能是16,則的可能是4,也可能是5,也可能是32,故的所有可能的取值為,故選:A.【題目點撥】本題主要考查數(shù)列的應(yīng)用及簡單的邏輯推理,屬于中檔題.7、A【解題分析】
利用圖象得到振幅,周期,所以,再由圖象關(guān)于成中心對稱,把原式等價于求的值.【題目詳解】由圖象得:振幅,周期,所以,所以,因為圖象關(guān)于成中心對稱,所以,,所以原式,故選A.【題目點撥】本題考查三角函數(shù)的周期性、對稱性等性質(zhì),如果算出每個值再相加,會浪費較多時間,且容易出錯,采用對稱性求解,能使問題的求解過程變得更簡潔.8、C【解題分析】
通過中位線定理可以得到在正方體中,可以得到所以這樣找到異面直線與所成角,通過計算求解.【題目詳解】分別是中點,所以有而,因此異面直線與所成角為在正方體中,,所以,故本題選C.【題目點撥】本題考查了異面直線所成的角.9、C【解題分析】
是等差數(shù)列,先根據(jù)已知求出首項和公差,再表示出,由的最小值確定n。【題目詳解】由題得,,解得,那么,當n=7時,取到最小值-49.故選:C【題目點撥】本題考查等差數(shù)列前n項和,是基礎(chǔ)題。10、A【解題分析】
由,求出,代入計算即可.【題目詳解】由題意,則.故答案為A.【題目點撥】本題考查了向量的數(shù)量積,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解題分析】
由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長可得答案.【題目詳解】因為,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識知在梯形中,.故答案為4【題目點撥】解決直線與圓的綜合問題時,一方面,要注意運用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識使問題較為簡捷地得到解決.12、【解題分析】
先利用累加法求出數(shù)列的通項公式,然后將數(shù)列的通項裂開,利用裂項求和法求出數(shù)列的前項和.【題目詳解】當時,.所以,,,,,.上述等式全部相加得,.,因此,數(shù)列的前項和為,故答案為:.【題目點撥】本題考查累加法求數(shù)列通項和裂項法求和,解題時要注意累加法求通項和裂項法求和對數(shù)列遞推公式和通項公式的要求,考查運算求解能力,屬于中等題.13、【解題分析】
利用,即可得出.【題目詳解】解:由已知,,又
,
故答案為:.【題目點撥】本題考查了反三角函數(shù)的求值、單調(diào)性,考查了推理能力與計算能力,屬于中檔題.14、【解題分析】
分子、分母同除以,將代入化簡即可.【題目詳解】因為,所以,故答案為.【題目點撥】本題主要考查同角三角函數(shù)之間的關(guān)系的應(yīng)用,屬于基礎(chǔ)題.同角三角函數(shù)之間的關(guān)系包含平方關(guān)系與商的關(guān)系,平方關(guān)系是正弦與余弦值之間的轉(zhuǎn)換,商的關(guān)系是正余弦與正切之間的轉(zhuǎn)換.15、-1【解題分析】
首先根據(jù),得到是以,的等差數(shù)列.再計算其前項和即可求出,的值.【題目詳解】因為,.所以數(shù)列是以,的等差數(shù)列.所以.所以,,.故答案為:【題目點撥】本題主要考查等差數(shù)列的判斷和等差數(shù)列的前項和的計算,屬于簡單題.16、2【解題分析】
根據(jù)條件,利用余弦定理可建立關(guān)于c的方程,即可解出c.【題目詳解】由余弦定理得,即,解得或(舍去).故填2.【題目點撥】本題主要考查了利用余弦定理求三角形的邊,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(1)【解題分析】
(1)由平面∥平面,根據(jù)面面平行的性質(zhì)定理,可得,,再由,得到.由平面平面,根據(jù)面面垂直的性質(zhì)定理可得平面,從而有.(2)過作于,根據(jù)題意有平面,過D作于H,連結(jié)AH,由三垂線定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【題目詳解】(1)證明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)過作于,∵為正三角形,∴D為中點,∵平面∴又∵,∴平面.在等邊三角形中,,過D作于H,連結(jié)AH,由三垂線定理知,∴是二面角的平面角.在中,~,,∴,,∴.【題目點撥】本題主要考查幾何體中面面平行的性質(zhì)定理和面面垂直的性質(zhì)定理及二角面角問題,還考查了空間想象,抽象概括,推理論證的能力,屬于中檔題.18、(1);(2)1【解題分析】
(1)取中點,連接,即為所求角。在中,易得MC,NC的長,MN可在直角三角形中求得。再用余弦定理易求得夾角。(2)連接,連接和交于點,連接,易得,所以為的中位線,所以為中點,所以的值為1?!绢}目詳解】(1)取中點,連接因為為矩形,分別為中點,所以所以異面直線與所成角就是與所成的銳角或直角因為平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圓周上點,且,所以中,,由余弦定理可求得所以異面直線與所成角的余弦值為(2)連接,連接和交于點,連接因為直線平面,直線平面,平面平面所以矩形的對角線交點為中點所以為的中位線,所以為中點又,所以的值為1【題目點撥】(1)異面直線所成夾角一般是要平移到一個平面。(2)通過幾何關(guān)系確定未知點的位置,再求解線段長即可。19、(1)最小正周期是(2)【解題分析】
(1)運用輔助角公式化簡得;(2)先計算的值為,構(gòu)造,求出的值.【題目詳解】(1)因為,所以,所以函數(shù)的最小正周期是.(2)因為,所以,因為,所以,所以,則【題目點撥】利用角的配湊法,即進行角的整體代入求值,考查整體思想的運用.20、(1)(2)【解題分析】試題分析:(1)根據(jù)若做廣告宣傳,廣告費為n千元比廣告費為千元時多賣出件,可得,利用疊加法可求得.(2)根據(jù)題意在時,利潤,可利用求最值.試題解析:(1)設(shè)表示廣告費為0元時的銷售量,由題意知,由疊加法可得即為所求。(2)設(shè)當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鷹課件語文教學(xué)課件
- 特殊旅客課件教學(xué)課件
- 2024年度建設(shè)工程施工合同工期與質(zhì)量要求
- 2024年度維修保養(yǎng)服務(wù)合同
- 2024年城鄉(xiāng)供水工程特許經(jīng)營合同
- 2024年度設(shè)備采購合同:甲乙雙方在二零二四年就某設(shè)備的采購的詳細合同條款
- 2024企業(yè)人力資源管理與聘用合同詳細規(guī)定
- 2024年家長學(xué)生老師三方面協(xié)議
- 2024年國際貨物買賣合同:機械設(shè)備
- 【初中生物】觀察周邊環(huán)境中的生物+課件2024-2025學(xué)年人教版生物七年級上冊
- 辦稅服務(wù)外包投標方案(技術(shù)標)
- 冷庫是有限空間應(yīng)急預(yù)案
- 基于PLC的機械手控制系統(tǒng)設(shè)計畢業(yè)設(shè)計
- 足軟組織感染的護理查房
- 建設(shè)項目竣工環(huán)境保護驗收管理辦法
- 植物學(xué)課件:第二章 種子和幼苗
- 一日生活中幼兒自主探究行為的表現(xiàn)及支持策略研究
- 第8課 用制度體系保證人民當家做主
- 軟件測試規(guī)范模板
- 足皮膚感染的護理課件
- 新蘇教版六年級上冊科學(xué)全冊知識點(精編)
評論
0/150
提交評論