上海建平中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第1頁
上海建平中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第2頁
上海建平中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第3頁
上海建平中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第4頁
上海建平中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海建平中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移 B.向右平移C.向左平移 D.向右平移2.將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積為()A. B. C. D.3.若a、b、c>0且a(a+b+c)+bc=4-2,則2a+b+c的最小值為()A.-1 B.+1C.2+2 D.2-24.在平面坐標系中,是圓上的四段弧(如圖),點P在其中一段上,角以O(shè)x為始邊,OP為終邊,若,則P所在的圓弧最有可能的是()A. B. C. D.5.已知直線平面,直線平面,下列四個命題中正確的是().()()()()A.()與() B.()與() C.()與() D.()與()6.我國古代數(shù)學(xué)名著九章算術(shù)記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形則它的體積為A. B.160 C. D.647.如果數(shù)列的前項和為,那么數(shù)列的通項公式是()A. B.C. D.8.若,且,則的值是()A. B. C. D.9.的值()A.小于0 B.大于0 C.等于0 D.不小于010.已知定義在上的偶函數(shù)滿足:當時,,若,則的大小關(guān)系是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若銳角滿足則______.12._________________.13.設(shè)向量與向量共線,則實數(shù)等于__________.14.如圖,分別沿長方形紙片和正方形紙片的對角線剪開,拼成如圖所示的平行四邊形,且中間的四邊形為正方形.在平行四邊形內(nèi)隨機取一點,則此點取自陰影部分的概率是______________15.數(shù)列通項公式,前項和為,則________.16.若數(shù)列滿足,且,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知關(guān)于的不等式.(1)若不等式的解集為,求;(2)當時,解此不等式.18.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)已知數(shù)列的前項和,,求數(shù)列,的前項和.19.如圖,已知等腰梯形中,是的中點,,將沿著翻折成,使平面平面.(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)在線段上是否存在點P,使得平面,若存在,求出的值;若不存在,說明理由.20.在平面立角坐標系中,過點的圓的圓心在軸上,且與過原點傾斜角為的直線相切.(1)求圓的標準方程;(2)點在直線上,過點作圓的切線、,切點分別為、,求經(jīng)過、、、四點的圓所過的定點的坐標.21.如圖,已知平面,為矩形,分別為的中點,.(1)求證:平面;(2)求證:面平面;(3)求點到平面的距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

利用的圖象變換規(guī)律,即可求解,得出結(jié)論.【題目詳解】由題意,函數(shù),,又由,故把函數(shù)的圖象上所有的點,向右平移個單位長度,可得的圖象,故選:B.【題目點撥】本題主要考查了三角函數(shù)的圖象變換規(guī)律,其中解答中熟記三角函數(shù)的圖象變換是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、C【解題分析】

試題分析:將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到的幾何體為底面為半徑為的圓、高為1的圓柱,其側(cè)面展開圖為長為,寬為1,所以所得幾何體的側(cè)面積為.故選C.3、D【解題分析】由a(a+b+c)+bc=4-2,得(a+c)·(a+b)=4-2.∵a、b、c>0.∴(a+c)·(a+b)≤(當且僅當a+c=b+a,即b=c時取“=”),∴2a+b+c≥2=2(-1)=2-2.故選:D點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤4、A【解題分析】

根據(jù)三角函數(shù)線的定義,分別進行判斷排除即可得答案.【題目詳解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,則cosα<sinα<tanα;若P在EF段,正切,余弦為負值,正弦為正,tanα<cosα<sinα;若P在GH段,正切為正值,正弦和余弦為負值,cosα<sinα<tanα.∴P所在的圓弧最有可能的是.故選:A.【題目點撥】本題任意角的三角函數(shù)的應(yīng)用,根據(jù)角的大小判斷角的正弦、余弦、正切值的正負及大小,為基礎(chǔ)題.5、D【解題分析】

∵直線l⊥平面α,若α∥β,則直線l⊥平面β,又∵直線m?平面β,∴l(xiāng)⊥m,即(1)正確;∵直線l⊥平面α,若α⊥β,則l與m可能平行、異面也可能相交,故(2)錯誤;∵直線l⊥平面α,若l∥m,則m⊥平面α,∵直線m?平面β,∴α⊥β;故(3)正確;∵直線l⊥平面α,若l⊥m,則m∥α或m?α,則α與β平行或相交,故(4)錯誤;故選D.6、A【解題分析】

分析:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點睛:本題利用空間幾何體的三視圖重點考查學(xué)生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學(xué)生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側(cè)視圖,確定組合體的形狀.7、D【解題分析】

利用計算即可.【題目詳解】當時,當時,即,故數(shù)列為等比數(shù)列則因為,所以故選:D【題目點撥】本題主要考查了已知來求,關(guān)鍵是利用來求解,屬于基礎(chǔ)題.8、A【解題分析】

對兩邊平方,可得,進而可得,再根據(jù),可知,由此即可求出結(jié)果.【題目詳解】因為,所以,所以,所以,又,所以所以.故選:A.【題目點撥】本題主要考查了同角的基本關(guān)系,屬于基礎(chǔ)題.9、A【解題分析】

確定各個角的范圍,由三角函數(shù)定義可確定正負.【題目詳解】∵,∴,,,∴.故選:A.【題目點撥】本題考查各象限角三角函數(shù)的符號,掌握三角函數(shù)定義是解題關(guān)鍵.10、C【解題分析】

根據(jù)函數(shù)的奇偶性將等價變形為,再根據(jù)函數(shù)在上單調(diào)性判斷函數(shù)值的大小關(guān)系,從而得出正確選項.【題目詳解】解因為函數(shù)為偶函數(shù),故,因為,,所以,因為函數(shù)在上單調(diào)增,故,故選C.【題目點撥】本題考查了函數(shù)單調(diào)性與奇偶性的運用,解題的關(guān)鍵是要能根據(jù)奇偶性將函數(shù)值進行轉(zhuǎn)化.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由已知利用同角三角函數(shù)基本關(guān)系式可求,的值,利用兩角差的余弦公式即可計算得解.【題目詳解】、為銳角,,,,,,.故答案為:.【題目點撥】本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.12、3【解題分析】

分式上下為的二次多項式,故上下同除以進行分析.【題目詳解】由題,,又,故.

故答案為:3.【題目點撥】本題考查了分式型多項式的極限問題,注意:當時,13、3【解題分析】

利用向量共線的坐標公式,列式求解.【題目詳解】因為向量與向量共線,所以,故答案為:3.【題目點撥】本題考查向量共線的坐標公式,屬于基礎(chǔ)題.14、【解題分析】

設(shè)正方形的邊長為,正方形的邊長為,分別求出陰影部分的面積和平行四邊形的面積,最后利用幾何概型公式求出概率.【題目詳解】設(shè)正方形的邊長為,正方形的邊長為,在長方形中,,故平行四邊形的面積為,陰影部分的面積為,所以在平行四邊形KLMN內(nèi)隨機取一點,則此點取自陰影部分的概率是.【題目點撥】本題考查了幾何概型概率的求法,求出平行四邊形的面積是解題的關(guān)鍵.15、1【解題分析】

利用裂項求和法求出,取極限進而即可求解.【題目詳解】,故,所以,故答案為:1【題目點撥】本題考查了裂項求和法以及求極限值,屬于基礎(chǔ)題.16、【解題分析】

對已知等式左右取倒數(shù)可整理得到,進而得到為等差數(shù)列;利用等差數(shù)列通項公式可求得,進而得到的通項公式,從而求得結(jié)果.【題目詳解】,即數(shù)列是以為首項,為公差的等差數(shù)列故答案為:【題目點撥】本題考查利用遞推公式求解數(shù)列通項公式的問題,關(guān)鍵是明確對于形式的遞推關(guān)系式,采用倒數(shù)法來進行推導(dǎo).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2(2)時,,時,,時,不等式的解集為空集,時,,時,.【解題分析】

(1)根據(jù)不等式的解集和韋達定理,可列出關(guān)于a的方程組,解得a;(2)不等式化為,討論a的取值,從而求得不等式的解集?!绢}目詳解】(1)由題得,,解集為,則有,解得;(2)由題,:當時,不等式化為,解得;當時,不等式等價于,若,解得;若,解得,若,解得;當時,不等式等價于,解得或.綜上,時,不等式的解集為,時,不等式的解集為,時,不等式的解集為空集,時,不等式的解集為,時,不等式的解集為.【題目點撥】本題考查一元二次不等式的解法與應(yīng)用,以及通過討論參數(shù)取值求不等式的解集,有一定的難度。18、(1),(2)【解題分析】

(1)根據(jù)題意得到,解方程組即可.(2)首先根據(jù),得到,再利用錯位相減法即可求出.【題目詳解】(1)有題知,解得.所以.(2)當時,,當時,.檢查:當時,.所以,.①,②,①②得:,.【題目點撥】本題第一問考查等差數(shù)列的性質(zhì),第二問考查利用錯位相減法求數(shù)列的前項和,同時考查了學(xué)生的計算能力,屬于中檔題.19、(Ⅰ)詳見解析;(Ⅱ)二面角的余弦值為;(Ⅲ)存在點P,使得平面,且.【解題分析】

試題分析:(I)根據(jù)直線與平面垂直的判定定理,需證明垂直平面內(nèi)的兩條相交直線.由題意易得四邊形是菱形,所以,從而,即,進而證得平面.(Ⅱ)由(I)可知,、、兩兩互相垂直,故可以為軸,為軸,為軸建立空間直角坐標系,利用空間向量即可求得二面角的余弦值.(Ⅲ)根據(jù)直線與平面平行的判定定理,只要能找到一點P使得PM平行平面內(nèi)的一條直線即可.由于,故可取線段中點P,中點Q,連結(jié).則,且.由此即可得四邊形是平行四邊形,從而問題得證.試題解析:(I)由題意可知四邊形是平行四邊形,所以,故.又因為,M為AE的中點所以,即又因為,所以四邊形是平行四邊形.所以故.因為平面平面,平面平面,平面所以平面.因為平面,所以.因為,、平面,所以平面.(Ⅱ)以為軸,為軸,為軸建立空間直角坐標系,則,,,.平面的法向量為.設(shè)平面的法向量為,因為,,,令得,.所以,因為二面角為銳角,所以二面角的余弦值為.(Ⅲ)存在點P,使得平面.法一:取線段中點P,中點Q,連結(jié).則,且.又因為四邊形是平行四邊形,所以.因為為的中點,則.所以四邊形是平行四邊形,則.又因為平面,所以平面.所以在線段上存在點,使得平面,.法二:設(shè)在線段上存在點,使得平面,設(shè),(),,因為.所以.因為平面,所以,所以,解得,又因為平面,所以在線段上存在點,使得平面,.考點:1、空間直線與平面的位置關(guān)系;2、二面角.20、(1)(2)經(jīng)過、、、四點的圓所過定點的坐標為、【解題分析】

(1)先算出直線方程,根據(jù)相切和過點,圓心在軸上聯(lián)立方程解得答案.(2)取線段的中點,經(jīng)過、、、四點的圓是以線段為直徑的圓,設(shè)點的坐標為,則點的坐標為,將圓方程表示出來,聯(lián)立方程組解得答案.【題目詳解】(1)由題意知,直線的方程為,整理為一般方程可得由圓的圓心在軸上,可設(shè)圓的方程為,由題意有,解得:,,故圓的標準方程為.(2)由圓的幾何性質(zhì)知,,,取線段的中點,由直角三角形的性質(zhì)可知,故經(jīng)過、、、四點的圓是以線段為直徑的圓,設(shè)點的坐標為,則點的坐標為有則以為直徑的圓的方程為:,整理為可得.令,解得或,故經(jīng)過、、、四點的圓所過定點的坐標為、.【題目點撥】本題考查了圓的方程,切線問題,四點共圓,定點問題,綜合性強,技巧性高,意在考查學(xué)生的綜合應(yīng)用能力.21、(1)證明見解析;(2)證明見解析;(3).【解題分析】

(1)利用線面平行的判定定理,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論