版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆河南省三門峽市靈寶市實(shí)驗(yàn)高級(jí)中學(xué)數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若將一個(gè)質(zhì)點(diǎn)隨機(jī)投入如圖所示的長方形ABCD中,其中AB=2,BC=1,則質(zhì)點(diǎn)落在以AB為直徑的半圓內(nèi)的概率是()A. B. C. D.2.若,則()A. B. C. D.3.中國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行數(shù)里,請(qǐng)公仔細(xì)算相還”.其意思為:“有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”,請(qǐng)問從第幾天開始,走的路程少于30里()A.3 B.4 C.5 D.64.設(shè)為兩條不同的直線,為三個(gè)不重合平面,則下列結(jié)論正確的是()A.若,,則 B.若,則C.若,,則 D.若,,則5.在中,角,,所對(duì)的邊分別為,,,若,且,則的面積的最大值為()A. B. C. D.6.己知向量,,,則“”是“”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.辦公室裝修一新,放些植物花草可以清除異味,公司提供綠蘿、文竹、碧玉、蘆薈4種植物供員工選擇,每個(gè)員工任意選擇2種,則員工甲和乙選擇的植物全不同的概率為:A. B. C. D.8.已知向量若與平行,則實(shí)數(shù)的值是()A.-2 B.0 C.1 D.29.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為弧田面積,弧田(如圖所示)由圓弧和其所對(duì)的弦圍成,公式中“弦”指圓弧所對(duì)弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑為6米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積大約是()()A.16平方米 B.18平方米C.20平方米 D.24平方米10.如圖,正方形中,分別是的中點(diǎn),若則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,,是的中點(diǎn).若,則________.12.在等比數(shù)列中,,,則_____.13.已知等比數(shù)列{an}為遞增數(shù)列,且,則數(shù)列{an}的通項(xiàng)公式an=______________.14.等差數(shù)列{}前n項(xiàng)和為.已知+-=0,=38,則m=_______.15.若函數(shù)的反函數(shù)的圖象過點(diǎn),則________.16.設(shè)向量,,______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(1)求頻率分布直方圖中的值;(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;(3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.18.已知函數(shù)(其中).(1)當(dāng)時(shí),求不等式的解集;(2)若關(guān)于的不等式恒成立,求的取值范圍.19.設(shè)函數(shù).(1)已知圖象的相鄰兩條對(duì)稱軸的距離為,求正數(shù)的值;(2)已知函數(shù)在區(qū)間上是增函數(shù),求正數(shù)的最大值.20.已知數(shù)列的前項(xiàng)和為,且滿足.(1)求的值;(2)證明是等比數(shù)列,并求;(3)若,數(shù)列的前項(xiàng)和為.21.已知數(shù)列滿足,數(shù)列滿足,其中為的前項(xiàng)和,且(1)求數(shù)列和的通項(xiàng)公式(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】試題分析:本題是幾何概型問題,矩形面積2,半圓面積,所以質(zhì)點(diǎn)落在以AB為直徑的半圓內(nèi)的概率是,故選B.考點(diǎn):幾何概型.2、A【解題分析】試題分析:,故選A.考點(diǎn):兩角和與差的正切公式.3、B【解題分析】
由題意知,本題考查等比數(shù)列問題,此人每天的步數(shù)構(gòu)成公比為的等比數(shù)列,由求和公式可得首項(xiàng),進(jìn)而求得答案.【題目詳解】設(shè)第一天的步數(shù)為,依題意知此人每天的步數(shù)構(gòu)成公比為的等比數(shù)列,所以,解得,由,,解得,故選B.【題目點(diǎn)撥】本題主要考查學(xué)生的數(shù)學(xué)抽象和數(shù)學(xué)建模能力.4、D【解題分析】
根據(jù)空間中線線、線面、面面位置關(guān)系,逐項(xiàng)判斷,即可得出結(jié)果.【題目詳解】A選項(xiàng),若,,則可能平行、相交或異面;故A錯(cuò);B選項(xiàng),若,,則或,故B錯(cuò);C選項(xiàng),若,,因?yàn)闉槿齻€(gè)不重合平面,所以或,故C錯(cuò);D選項(xiàng),若,,則,故D正確;故選D【題目點(diǎn)撥】本主要考查命題真假的判定,熟記空間中線線、線面、面面位置關(guān)系,即可得出結(jié)果.5、A【解題分析】
由以及,結(jié)合二倍角的正切公式,可得,根據(jù)三角形的內(nèi)角的范圍可得,由余弦定理以及基本不等式可得,再根據(jù)面積公式可得答案.【題目詳解】因?yàn)?,且,所以,所以,則.由于為定值,由余弦定理得,即.根據(jù)基本不等式得,即,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.所以.故選:A【題目點(diǎn)撥】本題考查了二倍角的正切公式,考查了余弦定理,考查了基本不等式,考查了三角形的面積公式,屬于中檔題.6、A【解題分析】
先由題意,得到,再由充分條件與必要條件的概念,即可得出結(jié)果.【題目詳解】因?yàn)?,,所以,若,則,所以;若,則,所以;綜上,“”是“”的充要條件.故選:A【題目點(diǎn)撥】本題主要考查向量共線的坐標(biāo)表示,以及命題的充要條件的判定,熟記充分條件與必要條件的概念,以及向量共線的坐標(biāo)表示即可,屬于??碱}型.7、A【解題分析】
從公司提供的4中植物中任意選擇2種,求得員工甲和乙共有種選法,再由任選2種有種,得到員工甲和乙選擇的植物全不同有種選法,利用古典概型的概率計(jì)算公式,即可求解.【題目詳解】由題意,從公司提供綠蘿、文竹、碧玉、蘆薈4種植物每個(gè)員工任意選擇2種,則員工甲和乙共有種不同的選法,又從公司提供綠蘿、文竹、碧玉、蘆薈4種植物中,任選2種,共有種選法,則員工甲和乙選擇的植物全不同,共有種不同的選法,所以員工甲和乙選擇的植物全不同的概率為,故選A.【題目點(diǎn)撥】本題主要考查了古典概型及其概率的計(jì)算,以及排列、組合的應(yīng)用,其中解答中認(rèn)真審題,合理利用排列、組合求得基本事件的個(gè)數(shù),利用古典概型的概率計(jì)算公式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.8、D【解題分析】
因?yàn)?,所以由于與平行,得,解得.9、C【解題分析】分析:根據(jù)已知數(shù)據(jù)分別計(jì)算弦和矢的長度,再按照弧田面積經(jīng)驗(yàn)公式計(jì)算,即可得到答案.詳解:由題可知,半徑,圓心角,弦長:,弦心距:,所以矢長為.按照弧田面積經(jīng)驗(yàn)公式得,面積故選C.點(diǎn)睛:本題考查弓形面積以及古典數(shù)學(xué)的應(yīng)用問題,考查學(xué)生對(duì)題意的理解和計(jì)算能力.10、D【解題分析】試題分析:取向量作為一組基底,則有,所以又,所以,即.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
在中,由已知利用余弦定理可得,結(jié)合,解得,可求,在中,由余弦定理可得的值.【題目詳解】由題意,在中,由余弦定理可得:可得:所以:…………①又……………②所以聯(lián)立①②,解得.所以在中,由余弦定理得:即故答案為:【題目點(diǎn)撥】本題考查利用余弦定理解三角形,屬于中檔題.12、1【解題分析】
由等比數(shù)列的性質(zhì)可得,結(jié)合通項(xiàng)公式可得公比q,從而可得首項(xiàng).【題目詳解】根據(jù)題意,等比數(shù)列中,其公比為,,則,解可得,又由,則有,則,則;故答案為:1.【題目點(diǎn)撥】本題考查等比數(shù)列的通項(xiàng)公式以及等比數(shù)列性質(zhì)(其中m+n=p+q)的應(yīng)用,也可以利用等比數(shù)列的基本量來解決.13、【解題分析】設(shè)數(shù)列的首項(xiàng)為,公比為q,則,所以,由得解得,因?yàn)閿?shù)列為遞增數(shù)列,所以,,所以考點(diǎn)定位:本題考查等比數(shù)列,意在考查考生對(duì)等比數(shù)列的通項(xiàng)公式的應(yīng)用能力14、10【解題分析】
根據(jù)等差數(shù)列的性質(zhì),可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.15、【解題分析】
由反函數(shù)的性質(zhì)可得的圖象過,將代入,即可得結(jié)果.【題目詳解】的反函數(shù)的圖象過點(diǎn),的圖象過,故答案為.【題目點(diǎn)撥】本題主要考查反函數(shù)的基本性質(zhì),意在考查對(duì)基礎(chǔ)知識(shí)掌握的熟練程度,屬于基礎(chǔ)題.16、【解題分析】
利用向量夾角的坐標(biāo)公式即可計(jì)算.【題目詳解】.【題目點(diǎn)撥】本題主要考查了向量夾角公式的坐標(biāo)運(yùn)算,屬于容易題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解題分析】
試題分析:(Ⅰ)在頻率分布直方圖中,由頻率總和即所有矩形面積之和為,可求;(Ⅱ)在頻率分布直方圖中先求出50名受訪職工評(píng)分不低于80的頻率為,由頻率與概率關(guān)系可得該部門評(píng)分不低于80的概率的估計(jì)值為;(Ⅲ)受訪職工評(píng)分在[50,60)的有3人,記為,受訪職工評(píng)分在[40,50)的有2人,記為,列出從這5人中選出兩人所有基本事件,即可求相應(yīng)的概率.試題解析:(Ⅰ)因?yàn)椋浴?.4分)(Ⅱ)由所給頻率分布直方圖知,50名受訪職工評(píng)分不低于80的頻率為,所以該企業(yè)職工對(duì)該部門評(píng)分不低于80的概率的估計(jì)值為………8分(Ⅲ)受訪職工評(píng)分在[50,60)的有:50×0.006×10=3(人),即為;受訪職工評(píng)分在[40,50)的有:50×0.004×40=2(人),即為.從這5名受訪職工中隨機(jī)抽取2人,所有可能的結(jié)果共有10種,它們是又因?yàn)樗槿?人的評(píng)分都在[40,50)的結(jié)果有1種,即,故所求的概率為考點(diǎn):1.頻率分布直方圖;2.概率和頻率的關(guān)系;3.古典概型.【名師點(diǎn)睛】本題考查頻率分布直方圖、概率與頻率關(guān)系、古典概型,屬中檔題;利用頻率分布直方圖解題的時(shí),注意其表達(dá)的意義,同時(shí)要理解頻率是概率的估計(jì)值這一基礎(chǔ)知識(shí);在利用古典概型解題時(shí),要注意列出所有的基本事件,千萬不可出現(xiàn)重、漏的情況.18、(1)或;(2).【解題分析】
(1)先由,將不等式化為,直接求解,即可得出結(jié)果;(2)先由題意得到恒成立,根據(jù)含絕對(duì)值不等式的性質(zhì)定理,得到,從而可求出結(jié)果.【題目詳解】(1)當(dāng)時(shí),求不等式,即為,所以,即或,原不等式的解集為或.(2)不等式,即為,即關(guān)于的不等式恒成立.而,所以,解得或,解得或.所以的取值范圍是.【題目點(diǎn)撥】本題主要考查含絕對(duì)值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記不等式的解法,以及絕對(duì)值不等式的性質(zhì)定理即可,屬于??碱}型.19、(1)1;(2).【解題分析】
(1)由二倍角公式可化函數(shù)為,結(jié)合正弦函數(shù)的性質(zhì)可得;(2)先求得的增區(qū)間,其中,此區(qū)間應(yīng)包含,這樣可得之間的不等關(guān)系,利用>0,得的范圍,從而得,最終可得的最大值.【題目詳解】解法1:(1)因?yàn)閳D象的相鄰兩條對(duì)稱軸的距離為,所以的最小正周期為,所以正數(shù).(2)因?yàn)?,所以由得單調(diào)遞增區(qū)間為,其中.由題設(shè),于是,得因?yàn)?,所以,,因?yàn)?,所以,所以,正?shù)的最大值為.解法2:(1)同解法1.(2)當(dāng)時(shí),因?yàn)樵趩握{(diào)遞增,因?yàn)?,所以于是,解得,故正?shù)的最大值為.【題目點(diǎn)撥】本題考查二倍角公式,考查三角函數(shù)的性質(zhì).解題關(guān)鍵是化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,即形式,然后結(jié)合正弦函數(shù)的性質(zhì)求解.20、(1)2,6,14;(2)(3)【解題分析】
(1)通過代入,可求得前3項(xiàng);(2)利用已知求的方法,求解;(3)首先求得數(shù)列的通項(xiàng)公式,將通項(xiàng)分成兩部分,一部分利用錯(cuò)位相減法求和,另一部分常數(shù)列求和.【題目詳解】(1)當(dāng)時(shí),,解得;當(dāng)時(shí),,解得;當(dāng)時(shí),,解得.(2)當(dāng)時(shí),兩式相減,,且時(shí)首項(xiàng)為4,公比為2的等比數(shù)列.(3)根據(jù)(2)可知,,設(shè),設(shè)其前項(xiàng)和為,兩式相減可得解得,數(shù)列,前項(xiàng)和為,數(shù)列的前項(xiàng)和是【題目點(diǎn)撥】本題考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年08月中國光大銀行西安分行柜員招聘筆試歷年參考題庫附帶答案詳解
- 2025年度美容機(jī)構(gòu)與美容師長期合作合同4篇
- 2024年留學(xué)中介行業(yè)市場(chǎng)全景評(píng)估及發(fā)展戰(zhàn)略規(guī)劃報(bào)告
- 二零二五版4S店汽車銷售及二手車置換服務(wù)合同2篇
- 健康飲水指南
- 健康環(huán)境保護(hù)
- 基于人工智能的2025年度智能醫(yī)療系統(tǒng)開發(fā)合同3篇
- 專業(yè)導(dǎo)師制與導(dǎo)師資源
- 金華浙江金華永康市民政局工作人員招聘筆試歷年參考題庫附帶答案詳解
- 20202021學(xué)年滬科選修3-1靜電與生活課件
- 類文閱讀:一起長大的玩具(金波)
- 食品公司冷庫崗位風(fēng)險(xiǎn)告知卡
- 《AI營銷畫布:數(shù)字化營銷的落地與實(shí)戰(zhàn)》
- 崗位安全培訓(xùn)考試題參考答案
- 英文書信及信封格式詳解(課堂)課件
- 星巴克的市場(chǎng)營銷策劃方案
- 南京某商城機(jī)電安裝施工組織設(shè)計(jì)
- 醫(yī)療設(shè)備托管服務(wù)投標(biāo)方案
- 宗教教職人員備案表
- 麻醉藥品、精神藥品、放射性藥品、醫(yī)療用毒性藥品及藥品類易制毒化學(xué)品等特殊管理藥品的使用與管理規(guī)章制度
- 信訪事項(xiàng)復(fù)查復(fù)核申請(qǐng)書
評(píng)論
0/150
提交評(píng)論