版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
習題課4與直線有關的對稱問題習題課1.理解點關于點對稱的性質,能解決對稱點的坐標問題.2.理解點關于直線對稱的性質,能利用該性質求對稱點的坐標.3.理解直線關于點對稱的性質,能求解對稱直線方程.4.理解直線關于直線對稱的性質,能求解對稱直線方程.任務:利用點關于點對稱的性質求對稱點坐標.
點關于點成中心對稱:若兩點,關于點中心對稱,則,此公式也稱為線段的中點坐標公式.目標一:理解點關于點對稱的性質,能解決對稱點的坐標問題.
已知點與關于坐標原點對稱,則等于()A.5
B.1
C.-5
D.-1解:因為點與關于坐標原點對稱,所以,,解得,,故,故選:B.B任務:利用點關于直線對稱的性質求對稱點坐標.
已知直線,求點關于直線l的對稱點坐標.目標二:理解點關于直線對稱的性質,能利用該性質求對稱點的坐標.解:設點P關于l的對稱點為,則,解得,故點關于直線l的對稱點坐標為.歸納總結點關于直線的對稱問題:求點P(x0,y0)關于直線y=kx+b(k≠0)的對稱點為P'(x',y').(1)PP'所在直線與對稱軸垂直,利用垂直的斜率關系得到一個方程.(2)PP'的中點在對稱軸上,得到第二個方程.(3)解這個方程組,即可得到P'(x',y'),即:練一練已知直線和定點,求點P關于直線l對稱的點P’的坐標.解:設點P關于直線l對稱的點P’的坐標,由,解得:,所以P’坐標為.
目標三:理解直線關于點對稱的性質,能求解對稱直線方程.任務:利用直線關于點對稱的性質求解對稱直線方程.
已知,直線.(1)直線l關于點A的對稱直線l1的方程;(2)若光線沿直線照射到直線l上后反射,求反射光線所在的直線l2的方程.解:(1)設直線l1上任意一點的坐標為,則關于點的對稱點為在直線l上,所以,即,所以直線l1的方程為;
(2)若光線沿直線照射到直線l上后反射,求反射光線所在的直線l2的方程.解:(2)聯(lián)立,解得,,所求直線過點,取直線上的一點為,設關于直線l的對稱點為,則,解得,,所以所求直線過點和,反射光線所在的直線l2的方程為,即.歸納總結求直線l關于點M(m,n)對稱的直線l’的步驟:(1)在l'上任取一點T(x,y);(2)求T關于M的對稱點T'(2m-x,2n-y);(3)將T'的坐標代入直線l的方程,化簡得所求l'的方程.
已知直線,求直線l關于點對稱的直線l1方程.練一練解:在直線l1上任取一點M(x,y),則M(x,y)關于點對稱的點在直線l上,把點代入直線l方程,得,化簡,得3x-y-17=0.故直線l關于點對稱的直線方程為3x-y-17=0.目標四:理解直線關于直線對稱的性質,能求解對稱直線方程.任務:利用直線關于直線對稱的性質求解對稱直線方程.直線l1和l2關于直線l對稱,包括兩種情形:①,此時直線l到直線l1和l2的距離相等;②直線l1,l2,l三條直線交于一點,設交點為A,則在直線l1上任取一點P(異于點A),其關于直線l的對稱點P'在直線l2上.
已知直線與直線的交點為A,直線l經過點A,點到直線l的距離為2.直線l3與直線l1關于直線l2對稱.(1)求直線l的方程;(2)求直線l3的方程.解:(1)由,解得,所以,當直線l的斜率不存在時,其方程為x=2,此時點到直線l的距離,當直線l的斜率存在時,設直線l的方程為:,則點到直線l的距離為,解得或,故直線l的方程為,或.(2)由(1)可知,點,由,得點,設點B關于直線的對稱點為,則,且,設點B與點的中點為C,則,,故,解得,所以,由,,由兩點式方程可知直線的方程為:,化簡得.歸納總結直線關于直線對稱的直線方程求法.情形2:已知直線l1與對稱軸l平行,求對稱直線l2:情形1:已知直線l1與對稱軸l有交點P,求對稱直線l2:(1)P點必在對稱直線l2上,所以先求交點P;(2)取l1上不同于P點的任意一點,求出此點關于對稱軸l的對稱點P2;(3)寫出P和P2的兩點式方程即可.(1)由平行設出l2的方程;(2)由平行線間的距離相等求l2的方程.
設直線與,且.(1)求l1,l2之間的距離;(2)求l1關于l2對稱的直線方程.練一練解:因為,所以,解得(舍)或,所以,,(2)設l1關于l2對稱的直線方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物聯(lián)網認證技術發(fā)展趨勢-洞察分析
- 虛擬現(xiàn)實時尚產品市場調研-洞察分析
- 體育課程資源整合創(chuàng)新-洞察分析
- 鹽水浴在慢性疼痛治療-洞察分析
- 野生植物種子資源保存技術-洞察分析
- 物聯(lián)網在智能家居中的應用-洞察分析
- 營養(yǎng)基因組與新型飼料開發(fā)-洞察分析
- 運動防護用具的智能設計理念-洞察分析
- 語法類型學的歷史研究-洞察分析
- 舞臺藝術人才選拔機制-洞察分析
- 肌萎縮側索硬化癥查房課件
- 數(shù)學與語言學、語言藝術的交叉研究
- 醫(yī)院“無陪護”病房試點工作方案
- 清華大學大學物理-光的偏振
- 心理健康教育-網絡與青少年
- 高中英語人教版(2019) 選擇性必修一 Unit 3 課文語法填空(含答案)
- 2021-2022學年陜西省寶雞市陳倉區(qū)北師大版六年級上冊期末考試數(shù)學試卷(含答案解析)
- 水工-建筑物課件
- 應用PDCA提高入院宣教的知曉率
- 線性系統(tǒng)理論鄭大鐘307張課件
- 2019-2020學年第一學期廣東省廣州市天河區(qū)3年級數(shù)學期末考試卷
評論
0/150
提交評論