浙江省杭州市蕭山區(qū)2023-2024學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
浙江省杭州市蕭山區(qū)2023-2024學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
浙江省杭州市蕭山區(qū)2023-2024學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
浙江省杭州市蕭山區(qū)2023-2024學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
浙江省杭州市蕭山區(qū)2023-2024學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省杭州市蕭山區(qū)2023-2024學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,分別與相切于點,為上一點,,則()A. B. C. D.2.如圖,是的直徑,,垂足為點,連接交于點,延長交于點,連接并延長交于點.則下列結(jié)論:①;②;③點是的中點.其中正確的是()A.①② B.①③ C.②③ D.①②③3.某市為解決部分市民冬季集中取暖問題需鋪設一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設實際每天鋪設管道x米,則可得方程=15,根據(jù)此情景,題中用“…”表示的缺失的條件應補為()A.每天比原計劃多鋪設10米,結(jié)果延期15天才完成B.每天比原計劃少鋪設10米,結(jié)果延期15天才完成C.每天比原計劃多鋪設10米,結(jié)果提前15天才完成D.每天比原計劃少鋪設10米,結(jié)果提前15天才完成4.某校為了了解九年級學生的體能情況,隨機抽取了名學生測試1分鐘仰臥起坐的次數(shù),統(tǒng)計結(jié)果并繪制成如圖所示的頻數(shù)分布直方圖.已知該校九年級共有名學生,請據(jù)此估計,該校九年級分鐘仰臥起坐次數(shù)在次之間的學生人數(shù)大約是()A. B.C. D.5.如果用線段a、b、c,求作線段x,使,那么下列作圖正確的是()A. B.C. D.6.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數(shù)法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1057.對于函數(shù),下列結(jié)論錯誤的是()A.圖象頂點是 B.圖象開口向上C.圖象關(guān)于直線對稱 D.圖象最大值為﹣98.在同一時刻,兩根長度不等的竿子置于陽光之下,而它們的影長相等,那么這兩根竿子的相對位置是()A.兩根都垂直于地面 B.兩根平行斜插在地上 C.兩根不平行 D.兩根平行倒在地上9.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知一元二次方程x2+kx-3=0有一個根為1,則k的值為()A.?2 B.2 C.?4 D.411.圖所示,已知二次函數(shù)的圖象正好經(jīng)過坐標原點,對稱軸為直線.給出以下四個結(jié)論:①;②;③;④.正確的有()A.個 B.個 C.個 D.個12.方程的根是()A. B.C. D.二、填空題(每題4分,共24分)13.半徑為4的圓中,長為4的弦所對的圓周角的度數(shù)是_________.14.如圖,AB是半圓O的直徑,AB=10,過點A的直線交半圓于點C,且sin∠CAB=,連結(jié)BC,點D為BC的中點.已知點E在射線AC上,△CDE與△ACB相似,則線段AE的長為________;15.如圖,拋物線與軸交于點和點.(1)已知點在第一象限的拋物線上,則點的坐標是_______.(2)在(l)的條件下連接,為拋物線上一點且,則點的坐標是_______.16.如圖,△ABC為⊙O的內(nèi)接三角形,若∠OBA=55°,則∠ACB=_____.17.小剛和小亮用圖中的轉(zhuǎn)盤做“配紫色”游戲:分別轉(zhuǎn)動兩個轉(zhuǎn)盤各一次,若其中的一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一個轉(zhuǎn)出了藍色,則可配成紫色,此時小剛贏,否則小亮贏.若用P1表示小剛贏的概率,用P2表示小亮贏概率,則兩人贏的概率P1________P2(填寫>,=或<)18.一圓錐的母線長為5,底面半徑為3,則該圓錐的側(cè)面積為________.三、解答題(共78分)19.(8分)如圖,⊙O的直徑AB與弦CD相交于點E,且DE=CE,⊙O的切線BF與弦AD的延長線交于點F.(1)求證:CD∥BF;(2)若⊙O的半徑為6,∠A=35°,求的長.20.(8分)某校為了解全校學生主題閱讀的情況,隨機抽查了部分學生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計圖表.請根據(jù)統(tǒng)計圖表中的信息,解答下列問題:(1)求被抽查的學生人數(shù)和m的值;(2)求本次抽查的學生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);(3)若該校共有1200名學生,根據(jù)抽查結(jié)果,估計該校學生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù)。21.(8分)一種拉桿式旅行箱的示意圖如圖所示,箱體長,拉桿最大伸長距離,(點在同一條直線上),在箱體的底端裝有一圓形滾輪與水平地面切于點某一時刻,點距離水平面,點距離水平面.(1)求圓形滾輪的半徑的長;(2)當人的手自然下垂拉旅行箱時,人感覺較為舒服,已知某人的手自然下垂在點處且拉桿達到最大延伸距離時,點距離水平地面,求此時拉桿箱與水平面所成角的大小(精確到,參考數(shù)據(jù):).22.(10分)某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了四次測試,測試成績?nèi)绫恚▎挝唬涵h(huán)):第一次第二次第三次第四次甲9887乙10679(1)根據(jù)表格中的數(shù)據(jù),分別計算甲、乙兩名運動員的平均成績;(2)分別計算甲、乙兩人四次測試成績的方差;根據(jù)計算的結(jié)果,你認為推薦誰參加省比賽更合適?請說明理由.23.(10分)如圖①,在矩形ABCD中,BC=60cm.動點P以6cm/s的速度在矩形ABCD的邊上沿A→D的方向勻速運動,動點Q在矩形ABCD的邊上沿A→B→C的方向勻速運動.P、Q兩點同時出發(fā),當點P到達終點D時,點Q立即停止運動.設運動的時間為t(s),△PDQ的面積為S(cm2),S與t的函數(shù)圖象如圖②所示.(1)AB=cm,點Q的運動速度為cm/s;(2)在點P、Q出發(fā)的同時,點O也從CD的中點出發(fā),以4cm/s的速度沿CD的垂直平分線向左勻速運動,以點O為圓心的⊙O始終與邊AD、BC相切,當點P到達終點D時,運動同時停止.①當點O在QD上時,求t的值;②當PQ與⊙O有公共點時,求t的取值范圍.24.(10分)如圖,一般捕魚船在A處發(fā)出求救信號,位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無法直線到達.救援艇決定馬上調(diào)整方向,先向北偏東方以每小時30海里的速度航行,同時捕魚船向正北低速航行.30分鐘后,捕魚船到達距離A處海里的D處,此時救援艇在C處測得D處在南偏東的方向上.求C、D兩點的距離;捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達時到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,25.(12分)如圖,在等腰直角△ABC中,∠ACB=90°,AC=BC=;(1)作⊙O,使它過點A、B、C(要求尺規(guī)作圖保留作圖痕跡);(2)在(1)所作的圓中,求圓心角∠BOC的度數(shù)和該圓的半徑26.如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC于點D,連接BD.(1)求證:∠A=∠CBD.(2)若AB=10,AD=6,M為線段BC上一點,請寫出一個BM的值,使得直線DM與⊙O相切,并說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【分析】連接OA,OB,根據(jù)切線的性質(zhì)定理得到∠OAP=90°,∠OBP=90°,根據(jù)四邊形的內(nèi)角和等于360°求出∠AOB,最后根據(jù)圓周角定理解答.【詳解】解:連接OA,OB,

∵PA,PB分別與⊙O相切于A,B點,

∴∠OAP=90°,∠OBP=90°,

∴∠AOB=360°-90°-90°-66°=114°,

由圓周角定理得,∠C=∠AOB=57°,

故選:A.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半是解題的關(guān)鍵.2、A【分析】根據(jù)“同弧所對圓周角相等”以及“等角的余角相等”即可解決問題①,運用相似三角形的判定定理證明△EBC∽△BDC即可得到②,運用反證法來判定③即可.【詳解】證明:①∵BC⊥AB于點B,∴∠CBD+∠ABD=90°,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正確;②∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴,故②正確;③∵∠ADB=90°,∴∠BDF=90°,∵DE為直徑,∴∠EBD=90°,∴∠EBD=∠BDF,∴DF∥BE,假設點F是BC的中點,則點D是EC的中點,∴ED=DC,∵ED是直徑,長度不變,而DC的長度是不定的,∴DC不一定等于ED,故③是錯誤的.故選:A.【點睛】本題考查了圓周角的性質(zhì),余角的性質(zhì),相似三角形的判定與性質(zhì),平行線的判定等知識,知識涉及比較多,但不難,熟練掌握基礎(chǔ)的定理性質(zhì)是解題的關(guān)鍵.3、C【解析】題中方程表示原計劃每天鋪設管道米,即實際每天比原計劃多鋪設米,結(jié)果提前天完成,選.4、B【分析】用樣本中次數(shù)在30~35次之間的學生人數(shù)所占比例乘以九年級總?cè)藬?shù)可得.【詳解】解:該校九年級1分鐘仰臥起坐次數(shù)在30~35次之間的學生人數(shù)大約是×150=25(人),故選:B.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.5、B【分析】利用比例式a:b=c:x,與已知圖形作對比,可以得出結(jié)論.【詳解】A、a:b=x:c與已知a:b=c:x不符合,故選項A不正確;B、a:b=c:x與已知a:b=c:x符合,故選項B正確;C、a:c=x:b與已知a:b=c:x不符合,故選項C不正確;D、a:x=b:c與已知a:b=c:x不符合,故選項D不正確;故選:B.【點睛】本題考查了平行線分線段成比例定理、復雜作圖,熟練掌握平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例.6、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數(shù)法—表示較大的數(shù).7、D【分析】根據(jù)函數(shù)解析式和二次函數(shù)的性質(zhì)可以判斷各個選項中的說法是否正確,本題得以解決.【詳解】解:A.∵函數(shù)y=(x+2)2-9,∴該函數(shù)圖象的頂點坐標是(-2,-9),故選項A正確;B.a(chǎn)=1>0,該函數(shù)圖象開口向上,故選項B正確;C.∵函數(shù)y=(x+2)2-9,∴該函數(shù)圖象關(guān)于直線x=-2對稱,故選項C正確;D.當x=-2時,該函數(shù)取得最小值y=-9,故選項D錯誤;故選:D.【點睛】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.8、C【分析】在不同時刻,同一物體的影子方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在變,依此進行分析.【詳解】在同一時刻,兩根竿子置于陽光下,但看到他們的影長相等,那么這兩根竿子的頂部到地面的垂直距離相等,而竿子長度不等,故兩根竿子不平行,故答案選擇C.【點睛】本題考查投影的相關(guān)知識,解決此題的關(guān)鍵是掌握平行投影的特點.9、D【分析】求得頂點坐標,得出頂點的橫坐標和縱坐標的關(guān)系式,即可求得.【詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點的橫坐標為:x=﹣=﹣a﹣,縱坐標為:y==﹣2a﹣,∴拋物線的頂點橫坐標和縱坐標的關(guān)系式為:y=2x+,∴拋物線的頂點經(jīng)過一二三象限,不經(jīng)過第四象限,故選:D.【點睛】本題考查了二次函數(shù)的性質(zhì),得到頂點的橫縱坐標的關(guān)系式是解題的關(guān)鍵.10、B【解析】分析:根據(jù)一元二次方程的解的定義,把x=1代入方程得關(guān)于k的一次方程1-3+k=0,然后解一次方程即可.詳解:把x=1代入方程得1+k-3=0,

解得k=1.

故選B.點睛:本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.11、C【分析】由拋物線開口方向得到a<0以及函數(shù)經(jīng)過原點即可判斷①;根據(jù)x=-1時的函數(shù)值可以判斷②;由拋物線的對稱軸方程得到為b=3a,用求差法即可判斷③;根據(jù)拋物線與x軸交點個數(shù)得到△=b2-4ac>0,則可對④進行判斷.【詳解】∵拋物線開口向下,

∴a<0,

∵拋物線經(jīng)過原點,

∴c=0,

則abc=0,所以①正確;

當x=-1時,函數(shù)值是a-b+c>0,則②正確;

∵拋物線的對稱軸為直線x=-<0,

∴b=3a,

又∵a<0,

∴a-b=-2a>0∴a>b,則③錯誤;

∵拋物線與x軸有2個交點,

∴△=b2-4ac>0,即4ac-b2<0,所以④正確.

故選:C【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.12、A【分析】利用直接開平方法進行求解即可得答案.【詳解】,x-1=0,∴x1=x2=1,故選A.【點睛】本題考查解一元二次方程,根據(jù)方程的特點選擇恰當?shù)姆椒ㄊ墙忸}的關(guān)鍵.二、填空題(每題4分,共24分)13、或【分析】首先根據(jù)題意畫出圖形,然后在優(yōu)弧上取點C,連接AC,BC,在劣弧上取點D,連接AD,BD,易得是等邊三角形,再利用圓周角定理,即可得出答案.【詳解】.如圖所示在優(yōu)弧上取點C,連接AC,BC,在劣弧上取點D,連接AD,BD,∵,∴∴是等邊三角形∴∴∴∴所對的圓周角的度數(shù)為或故答案為:或.【點睛】本題考查了圓周角的問題,掌握圓周角定理是解題的關(guān)鍵.14、3或9或或【分析】先根據(jù)圓周角定理及正弦定理得到BC=8,再根據(jù)勾股定理求出AC=6,再分情況討論,從而求出AE.【詳解】∵AB是半圓O的直徑,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵點D為BC的中點,∴CD=4.∵∠ACB=∠DCE=90,①當∠CDE1=∠ABC時,△ACB∽△E1CD,如圖∴,即,∴CE1=3,∵點E1在射線AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②當∠CE3D=∠ABC時,△ABC∽△DE3C,如圖∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案為:3或9或或.【點睛】此題考查相似三角形的判定及性質(zhì),當三角形的相似關(guān)系不是用相似符號連接時,一定要分情況來確定兩個三角形的對應關(guān)系,這是解此題容易錯誤的地方.15、(1)(2)【分析】(1)由題意把點坐標代入函數(shù)解析式求出m,并由點在第一象限判斷點的坐標;(2)利用相似三角形相關(guān)性質(zhì)判定≌,并根據(jù)題意設,則,表示P,把代入函數(shù)解析式從而得解.【詳解】解:(1)把點坐標代入函數(shù)解析式得解得∵點在第一象限∴∴∴(2)∵(作為特殊角,處理方法是作其補角)∴過點作延長線于點∵,∴為等腰直角三角形∴(因為,,所以考慮構(gòu)造一線三垂直,水平豎直作垂線)∴過點作軸于點,于點∴≌∵∴∴設:,則∴∴(注意咱們設,為整數(shù),點在第三象限,橫縱坐標為負數(shù),所以點的坐標表示要注意正負?。┌汛牒瘮?shù)解析式得解得或6(舍去)∴∴.【點睛】本題是二次函數(shù)綜合題,主要考查坐標軸上點的特點,對稱的性質(zhì),相似三角形的判定和性質(zhì),勾股定理,作出輔助線構(gòu)造出相似三角形是解本題的關(guān)鍵.16、35°【分析】先利用等腰三角形的性質(zhì)得∠OAB=∠OBA=55°,再根據(jù)三角形內(nèi)角和定理,計算出∠AOB=70°,然后根據(jù)圓周角定理求解.【詳解】∵OA=OB,∴∠OAB=∠OBA=55°,∴∠AOB=180°﹣55°×2=70°,∴∠ACB=∠AOB=35°.故答案為:35°.【點睛】本題主要考查圓周角定理,掌握同弧所對的圓周角是圓心角的一半,是解題的關(guān)鍵.17、<【分析】由于第二個轉(zhuǎn)盤紅色所占的圓心角為120°,則藍色部分為紅色部分的兩倍,即相當于分成三個相等的扇形(紅、藍、藍),再列出表,根據(jù)概率公式計算出小剛贏的概率和小亮贏的概率,即可得出結(jié)論.【詳解】解:用列表法將所有可能出現(xiàn)的結(jié)果表示如下:紅藍藍藍(紅,藍)(藍,藍)(藍,藍)黃(紅,黃)(藍,黃)(藍,黃)黃(紅,黃)(藍,黃)(藍,黃)紅(紅,紅)(藍,紅)(藍,紅)上面等可能出現(xiàn)的12種結(jié)果中,有3種情況可以得到紫色,所以小剛贏的概率是;則小亮贏的概率是所以;故答案為:<【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.18、15π【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】圓錐的側(cè)面積=?2π?3?5=15π.

故答案是:15π.【點睛】考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.三、解答題(共78分)19、(1)見解析;(2)【分析】(1)根據(jù)垂徑定理、切線的性質(zhì)求出AB⊥CD,AB⊥BF,即可證明;(2)根據(jù)圓周角定理求出∠COD,根據(jù)弧長公式計算即可.【詳解】(1)證明:∵AB是⊙O的直徑,DE=CE,∴AB⊥CD,∵BF是⊙O的切線,∴AB⊥BF,∴CD∥BF;(2)解:連接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的長為:=.【點睛】本題考查的是切線的性質(zhì)、垂徑定理、弧長的計算,掌握切線的性質(zhì)定理、垂徑定理和弧長的計算公式是解題的關(guān)鍵.20、(1)50,12;(2)5,4;(3)336.【分析】(1)先由6篇的人數(shù)及其所占百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他篇數(shù)的人數(shù)求得m的值;(2)根據(jù)中位數(shù)和眾數(shù)的定義求解;(3)用總?cè)藬?shù)乘以樣本中4篇的人數(shù)所占比例即可得.【詳解】解:(1)被調(diào)查的總?cè)藬?shù)為8÷16%=50人,m=50-(10+14+8+6)=12;(2)由于共有50個數(shù)據(jù),其中位數(shù)為第25、26個數(shù)據(jù)的平均數(shù),而第25、26個數(shù)據(jù)均為5篇,所以中位數(shù)為5篇,出現(xiàn)次數(shù)最多的是4篇,所以眾數(shù)為4篇;(3)估計該校學生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù)為人.【點睛】本題考查的是扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、(1);(2)【分析】(1)過點作于點,交于點,由平行得到,再根據(jù)相似三角形的性質(zhì)得到,列出關(guān)于半徑的方程,解方程即可得解;(2)在(1)結(jié)論的基礎(chǔ)上結(jié)合已知條件,利用銳角三角函數(shù)解即可得解.【詳解】解:(1)過點作于點,交于點,如圖:∴∴∴設圓形滾輪的半徑的長是∴,即∴∴圓形滾輪的半徑的長是;(2)∵∴在中,∴.故答案是:(1);(2)【點睛】本題考查了解直角三角形以及相似三角形的判定和性質(zhì),在求線段長度時,可以通過建立方程模型來解決問題.22、(1)甲的平均成績是8,乙的平均成績是8,(2)推薦甲參加省比賽更合適.理由見解析.【分析】(1)根據(jù)平均數(shù)的計算公式即可得甲、乙兩名運動員的平均成績;(2)根據(jù)方差公式即可求出甲、乙兩名運動員的方差,進而判斷出薦誰參加省比賽更合適.【詳解】(1)甲的平均成績是:(9+8+8+7)÷4=8,乙的平均成績是:(10+6+7+9)÷4=8,(2)甲的方差是:=,乙的方差是:=.所以推薦甲參加省比賽更合適.理由如下:兩人的平均成績相等,說明實力相當;但是甲的四次測試成績的方差比乙小,說明甲發(fā)揮較為穩(wěn)定,故推薦甲參加省比賽更合適.【點睛】本題考查了方差、算術(shù)平均數(shù),解決本題的關(guān)鍵是掌握方差、算術(shù)平均數(shù)的計算公式.23、(1)30,6;(2)①;②≤t≤.【分析】(1)設點Q的運動速度為a,則由圖②可看出,當運動時間為5s時,△PDQ有最大面積450,即此時點Q到達點B處,可列出關(guān)于a的方程,即可求出點Q的速度,進一步求出AB的長;(2)①如圖1,設AB,CD的中點分別為E,F(xiàn),當點O在QD上時,用含t的代數(shù)式分別表示出OF,QC的長,由OF=QC可求出t的值;②設AB,CD的中點分別為E,F(xiàn),⊙O與AD,BC的切點分別為N,G,過點Q作QH⊥AD于H,如圖2﹣1,當⊙O第一次與PQ相切于點M時,證△QHP是等腰直角三角形,分別用含t的代數(shù)式表示CG,QM,PM,再表示出QP,由QP=QH可求出t的值;同理,如圖2﹣2,當⊙O第二次與PQ相切于點M時,可求出t的值,即可寫出t的取值范圍.【詳解】(1)設點Q的運動速度為a,則由圖②可看出,當運動時間為5s時,△PDQ有最大面積450,即此時點Q到達點B處,∵AP=6t,∴S△PDQ=(60﹣6×5)×5a=450,∴a=6,∴AB=5a=30,故答案為:30,6;(2)①如圖1,設AB,CD的中點分別為E,F(xiàn),當點O在QD上時,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且點F是DC的中點,∴OF=QC,即4t=(90﹣6t),解得,t=;②設AB,CD的中點分別為E,F(xiàn),⊙O與AD,BC的切點分別為N,G,過點Q作QH⊥AD于H,如圖2﹣1,當⊙O第一次與PQ相切于點M時,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=QH,∴150﹣20t=30,∴t=;如圖2﹣2,當⊙O第二次與PQ相切于點M時,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=QH,∴20t﹣150=30,∴t=,綜上所述,當PQ與⊙O有公共點時,t的取值范圍為:≤t≤.【點睛】本題考查了圓和一元一次方程的綜合問題,掌握圓切線的性質(zhì)、解一元一次方程的方法、等腰直角三角形的性質(zhì)是解題的關(guān)鍵.24、(1)CD兩點的距離是10海里;(2)0.08【分析】過點C、D分別作,,垂足分別為G,F(xiàn),根據(jù)直角三角形的性質(zhì)得出CG,再根據(jù)三角函數(shù)的定義即可得出CD的長;如圖,設漁政船調(diào)整方向后t小時能與捕漁船相會合,由題意知,,,過點E作于點H,根據(jù)三角函數(shù)表示出EH,在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論